Monthly Archives: January 2016

INSPIRATION AND PERSPIRATION IN SCIENTIFIC RESEARCH! 

 

Inspiration and perspiration help make research progress! (http://dr-monsrs.net)
Inspiration and perspiration both help scientists make more research progress!    (http://dr-monsrs.net)

 

One of my distinguished and very ambitious professors in graduate school jokingly told me that his notable success for accomplishing a certain research effort was “more due to perspiration than inspiration!”  Those 2 factors always play important roles for the work of all research scientists.  I now will explain this so that all non-scientist readers will understand how and why this is so.

What is inspiration for scientists?  How does it work?

Inspiration is a quick mental process resulting in an unexpected new idea or thought that clarifies or advances something.  With inspiration, all of a sudden some relationships or difficulties become crystal clear and fully understood.  It typically is not frequent, and comes out of nowhere.  For researchers, an inspiration might set off a chain of other thoughts; thus, it can provide stimulation for further mental activities.  It often results in seeing connections that were not visible before, and hence can stimulate new directions.  Inspiration is not just an ordinary new idea, but often provides insight and new understanding.  Undoubtedly, some of the creative products from inventors arise due to inspiration.  To the best of my knowledge, nobody knows what sets off an inspiration; it could even be cosmic rays!

Inspiration has occurred to me mostly while waking up or in the nightly shower.  When inspiration happens, it is seen as being magical because it seems to appear without conscious intention.  If inspiration occurs at the time when you are just waking, it is very essential to immediately write down the new thoughts; if that is not done, they very rapidly become unavailable no matter how hard one tries to recall them later.  My own observations lead me to conclude that inspirations often are situated right at the border between unconsciousness and consciousness; at their time of origin, there seems to be much less restriction against thinking new and unusual thoughts or realizing new connections and relationships.

What is perspiration for scientists? 

Perspiration is a physiological result of hard work that is evident as sweating.  Working at research demands persistent efforts, focused attention to details, practical skills, and determination to overcome any failures; only a commitment to strong personal work can produce successful outcomes for research projects.  Hard work for research scientists involves a variety of both mental and physical efforts, usually necessitates working for long hours, and is accompanied by some perspiration.  Sweating correlates particularly well with  difficult efforts, and has a purely subconscious origin; it is valuable not only for keeping body temperature from getting too high, and also serves to identify work that requires strong exertions.

How do inspiration and perspiration interact with research scientists? 

For working on research investigations in laboratories or in the field, both inspiration and perspiration are very useful!  Both can overcome practical problems (e.g., finally getting a new experimental protocol to work after having many failures, constructing a good new concept to explain a set of unexpected data, modifying and developing a new method or instrument in order to be able to collect data that answers a research question, etc.).  Perspiration is especially useful for researchers because working harder always is available to help advance a research project; if you are not sweating, then you are not working at your maximal level!  Inspiration is particularly valuable for researchers because it can save time by jumping over some problematic situation, or penetrating a mental blockade.

Inspiration and perspiration can be found in all types of people, and all readers should be able to see both in action at their own workplace.  In my opinion, the necessity for hard work can be taught to research scientists, but inspiration is not able to be taught; I believe inspiration is an inborn trait.  Since it is not voluntary, one can only be aware of inspiration after it happens, and be ready to use it when it appears.  I see inspiration as being similar to creativity in that both are inherent mental capabilities; some people certainly are borne with much more than others have.

Conclusions! 

Perspiration from physical and mental activities often accompanies making a research project progress towards completion before a deadline.  Inspiration can help scientific research by jumping over or around some problematic point in the progress of a study.  Science and research clearly benefit from both inspiration and perspiration!

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE

PROGRESS FOR TREATING AND CURING CANCER!! 

 

Cancer definitely is "The Big C" for many patients, doctors, and researchers! (http://dr-monsrs.net)
Cancer definitely is “The Big C” for many patients, doctors, and researchers!           (http://dr-monsrs.net)

 

The latest annual report from the American Cancer Society (ACS) surveys cancer in many years up to the present, and provides statistical data about the current status of neoplastic disease in the United States (US) [1,2].  The largest conclusion is that clinical progress against cancer definitely is being made, but further efforts are needed.

ACS cancer statistics for 2016 [1,2]! 

The new ACS report describes numbers for cancer incidence, deaths, and survival through 2015 [1,2].  These latest figures permit comparison to corresponding measurements for many previous years, and allow predictions to be made for 2016.  Several brief discussions about what these figures reveal now are available [e.g., 3-5].

The cancer death rate for men and women fell 23% in the 21 year period from 1991 to 2012 (the latest year for which complete data are available).  This progress should be  welcomed by everyone!  Death from cancer still is second to heart disease for the entire US, but in 21 states it now has become the leading cause of death due to use of new and better therapies against heart disease.  For 2016, around 1.7 million new cases of all cancers can be expected in the US, presumably due mainly to the many environmental carcinogens we all are exposed to.

Cancers of the lung, prostate, colon, and breast remain the most frequent neoplasms nationally, and result in nearly half of the cancer deaths for both genders.  The total incidence of cancer would be higher were it not for decreased smoking of tobacco products.  Despite all measures now taken for early detection, breast cancers in women are estimated to be about 29% of all new cancer cases for females in 2016.

Incidence and death rate for some cancers are decreasing [1,2]! 

New cases of several cancers now are decreasing.  Half of the decline in new cancer cases for men is caused by the reduction of reporting prostate cancer by clinicians; this is due to their recognition that the prostate specific antigen test for the presence of prostate cancer gives positive results even for those men not needing clinical treatment.  Observed decreases in new lung cancer patients are due to the increased numbers of men and women who choose not to smoke tobacco; of course, many people still smoke, and the incidence needs to be reduced much further.  The observed decrease in colon cancer is believed due to increased use of colonoscopies as an effective screening test.

Better treatments and high levels of enrollment in clinical trials is producing a progressive increase in 5-year survival rate for children with cancer.  Among children aged 1-14 years in the US, death from cancers is second only to the deaths caused by accidents.  Leukemias account for 30% of all childhood cancers, but brain cancer now is more frequent than leukemia due to more effective therapies for treating this blood cell cancer.

Is progress truly being made in fighting cancer [1-5]? 

Despite continuing complaints that too much money is spent on treating and studying this deadly disease, progress against cancer in the US clearly is being made every year.  Education, early detection, prevention, and improved therapy all contribute to decreasing the incidence and death rates, thereby raising the number of cancer survivors.

Hidden among the tables of numbers published in the new ACS report is the solid fact that for some cancer patients death now is postponed for many years due to the development and use of more effective therapeutic treatments.  Moreover, of the more than 100 different kinds of cancer, some now are being cured!  Both of these facts provide evidence that progress in cancer care indeed is being made.

Critical discussion about the value of cancer research! 

One of the most frequent complaints about spending many billions of dollars on cancer research is that this killing disease still remains without a general cure (see: “After Spending Billions Why Have Scientists Not Yet Found a Cure for Cancer?” ).  A very strong rebuttal to this complaint is given by the thrilling research success of Dr. James P. Allison (M. D. Anderson Cancer Center, Houston, Texas) (see: “A Very New Immunotherapy Wins the 2015 Lasker-DeBakey Clinical Medical Research Award!” ).  His combined laboratory, clinical, and industrial research investigations with experimental immunology discovered a new kind of treatment that cures many cases of the previously fatal cancer, malignant myeloma (see new video: “Why Don’t Our Bodies Fight Cancer for Us?” ).   This story proves that research does result in very wonderful advances in curing some cancers!

This dramatic example of research success also illustrates several important generalizations about research on cancer: (1)  progress in treating and curing cancer proceeds step-by-step and not all-at-once, (2) basic laboratory research is the major basis leading to clinical progress against cancer, and, (3) progress in curing any type of cancer is inherently slow and takes at least one decade of dedicated work, but it is pursued by determined basic and clinical researchers.

Due to advances in cancer research, a diagnosis of cancer no longer is a certain prediction of early death!  Cancer research is the biggest stimulus for clinical progress against this disease.  The President of the American Society of Clinical Oncology, Dr. Julie M. Vose, has just stated [5], “As a result of our nation’s investment in cancer research, we have made tremendous progress in prevention, chemotherapy, surgery, radiation, immunotherapy and molecularly targeted treatments.  Every cancer survivor is living proof of its progress.”

Concluding remarks! 

This 2016 ACS report [1] documents the considerable progress being made against cancer.  An increasing number of patients with certain types of cancer now even are being cured!  Cancer research does cost lots of money and typically takes many years of work, but that leads to development of good clinical progress against this disease (i.e., decreased incidence, increased survival, and outright cures)!

 

[1]  Siegel, R.L., Miller, K.D., and Jemal, A., 2016.  Cancer statistics, 2016.  CA: A Cancer Journal for Clinicians,  6:7-30 .

[2]  Simon, S., 2016.  Cancer statistics report: death rate down 23% in 21 years.  Available on the American Cancer Society website at:  http://www.cancer.org/cancer/news/news/cancer-statistics-report-death-rate-down-23-percent-in-21-years .

[3]  Mulcahy, N., 2016.  Continuous decline in US cancer death rate: ACS report.  Available on the internet at: http://www.medscape.com/viewarticle/856938 .

[4]  MedlinePlus, 2016.  Cancer death rates down 23 percent since 1991: Study that translates to an additional 1.7 million survivors, expert says.  Available on the internet at:  http://www.nlm.nih.gov/medlineplus/news/fullstory_156576.html .

[5]  Julie M. Vose, 2016.  Decline in cancer deaths result of decades of advancing cancer care.  Available on website of the American Society of Clinical Oncology at:  http://www.asco.org/advocacy/decline-cancer-deaths-result-decades-advancing-cancer-care .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE

MORE SCIENCE AND RESEARCH WEBSITES RECOMMENDED FOR YOU! 

 

What's New in Science and Research? Where should Non-Scientists Look for This? (http://dr-monsrs.net)
What’s New in Science and Research? Where should Non-Scientists Look for This? (http://dr-monsrs.net)

 

Earlier, I recommended some websites with good science materials that are suitable for adults who are not scientists (see:  “Websites on Current Science Recommended by Dr.M for Non-Scientists” ).  Today’s listing presents some additional recommendations.  All are available gratis, so try to ignore the annoying advertisements in some of these sites!

Whether this is your first visit and you are a raw beginner, or you are a regular visitor looking to take the next step forward, these websites will help.  Check these out if your personal interests or questions fall within their scope; use their search boxes to look at specific topics.  Have fun!

AGRICULTURE:     http://www.ars.usda.gov/Aboutus/docs.htm?docid=18391

Large collection of research articles reporting studies conducted at the Beltsville Agricultural Research Center of the US Department of Agriculture;  find specific subjects that interest you.

ASTRONOMY:         http://hubblesite.org/

Dedicated website features latest images and information about research with the “Hubble Space Telescope”.

EARTH SCIENCE:  http://discovermagazine.com/tags/earth-science

Latest news from “Discover Magazine” about all aspects of earth science (atmosphere, ecology, geology, oceans, volcanoes, weather, etc. ).

GENERAL SCIENCE:  http://phys.org/help/about-us/

Very extensive good coverage for all branches of science and research, with daily news reports, images, and videos.  This website covers just about everything, so use the search box to select topics you want to learn about.

GENETICS OF HUMAN DISEASES:   http://www.medicalnewstoday.com/categories/genetics

“Medical News Today” displays latest news about research on the role of genetics in many human diseases; use the search box to find information about any specific disease.  Truly extensive!

GLYPHOSATE:       http://www.glyphosate.news/

Covers all the latest news, research, speculations, and current controversies about what the chemical herbicide, glyphosate, seems to be doing to innocent humans and wildlife.

NANOTECHNOLOGY:         http://www.nanowerk.com/

Includes latest news from research and industrial usage for all topics in nanoscience and emerging technologies.  Designed to be understandable by everyone!

POLYMER SCIENCE:     http://www.sciencedaily.com/terms/polymer.htm

Extensively covers all aspects of research on the chemistry, physics, and biology of polymers; use the search box to select subjects of interest.

SPACE SCIENCE:            http://www.nasa.gov/mission_pages/chandra/main/index.html

NASA website with latest information about the “Chandra X-ray Observatory”.

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE 

RESEARCH GRANTS CAUSE BOTH JOY AND DESPAIR FOR UNIVERSITY SCIENTISTS! 

 

The Yin and Yang of Research Grants in 2016! (http://dr-monsrs.net)
The Yin and Yang of Research Grants in 2016!  (http://dr-monsrs.net)

The public often forgets that scientists are people, too!  Your neighbor that you never say more than a “hello” to might even be a scientist!  Most readers have no idea what emotions arise in professional scientists working on research at modern universities.  So that you will learn more about scientists as people, this article looks at the strong emotions commonly caused by the research grant system.

Introduction! 

Officially, research grants pay for all the many different expenses of conducting experiments, and thus provide the essential financial sponsorship all scientists at universities need to obtain in order to (1) conduct research, and (2) keep their employment.  Without a grant, university scientists lose their laboratory, have their salary lowered, reduce their status, and are not promoted.  Research grants now are the difference between life and death for a faculty scientist’s career!  When scientists at universities cannot renew their research grant(s), this typically causes a career crisis that can necessitate either a major shift in job activities (e.g., into full-time teaching and/or administration) or relocation to a new employment.  Getting and maintaining research grants is the very largest goal for any faculty scientist; that target now far overshadows making breakthrough discoveries, publishing in the very best journals, and receiving a prize for meritorious teaching.

Feeling the rewards and problems of funding science with research grants! 

Receipt of official notice that a research grant application will be funded causes great joy and excitement for any faculty scientist.  All of a sudden, the 6-24 months of planning, writing, and revising the proposal seem worthwhile, rather than being burdensome and wearying!  Graduate students and research technicians now can be kept employed in the lab, and there will be time to finish some long experiment!  Sometimes a new piece of research equipment can be purchased, or a postdoctoral fellow can be added to the laboratory team!  A big celebration of this bountiful feast of happiness and satisfaction clearly is in order!

However, research grants are a double-edged sword for university scientists!  Very difficult problems frequently accompany research grant awards and these can cause great distress and anguish.  A few weeks or months after receiving a new grant, the euphoria wears off and the same scientist again becomes aware of the big problems all faculty scientists face with time and money.  After the initial joy, the second emotion to arise is fear!  Fear of what?  Fear of the fact that the clock is always ticking, and fear of the future!  While one is busy hiring and training a new technician, interviewing candidates for an open postdoctoral position, composing a manuscript, dealing with installation of a large new piece of research equipment, teaching in a class with 3 or 300 students, and, doing bench work in the lab, the clock always is counting down the remaining time before important deadlines occur (e.g., sending an annual report to the granting agency, the remaining time left in year-02, getting a large article published, submitting an application for renewal of the current grant at the best time, completing an application for a new (additional) grant now rather than later, etc.).

With regard to the time problem, each grant demands forms to be filled out, reports to be submitted, hours to be scheduled away from the lab, and deadlines to be met.  New lab employees need to be evaluated and then trained.  In addition to time needed for paperwork, administration, bench work in the lab, lab meetings, office hours for class students, and teaching work, the main time demand for all faculty scientists today is to submit more and more applications so multiple research grants can be obtained; the enormous pressures generated by this time crunch will have strong effects upon any human.  For most university scientists, acquiring multiple grants can result in such a large time shortage that there no longer is so much fun with personally working at their research; that stimulates the emotions of despair and depression!

Receipt of another research grant theoretically should solve the money problem for any university scientist.  Instead, the new dollars often have the opposite effect!  The university might suddenly raise the official salary levels for all employed technicians or graduate students; since the required increase was not included in the proposed budget, this obligation must be paid by those funds awarded for research supplies.  Buying a new research instrument might require changing the electricity supplies and remodeling to create a surrounding barrier zone; the grantee must pay for all that work, meaning more rebudgeting.  How then will new supply orders be paid for?

Feasting can be followed by a famine! 

Many applications for a research grant are not funded or only partially funded.  Sooner or later, even famous university scientists fail to have their research grant renewed.  Faculty scientists losing a research grant typically try very hard to get funded again via a revised application or a new application for a different project.  All science faculty losing their single research grant are facing the kiss of death, where they can lose everything; the unlucky scientist enters a period of true famine. That university scientist then finally becomes very aware that they only have rented their laboratory space, that their research accomplishments mean little to their university, and that their employer really hired them only to get their grant money (i.e., more profits!).  Trying to alternate back and forth between the conditions of feast and famine is an  emotional situation which is quite sufficient to cause premature aging!  Unfunded, but previously funded, faculty now are labelled as being “worthless” by their academic employer; feelings of anger, tearful sorrow, and dissatisfaction certainly flourish.  Emotions with feast-or-famine undergo a roller coaster ride!

Concluding discussion! 

Problematic features of the current research grant system for supporting scientific research at universities very clearly have emotional consequences.  Both happiness, sorrow, disgust, and endless worrying commonly are produced.  Having 2 or even 3 research grants can simply magnify the same emotions.  Living and working under the condition of feast-or-famine wears academic scientists down and does not encourage the progress of science.

Science has good involvements with business and commerce, but basic research itself is not supposed to be a business!  Research grants or other financial support are necessary to pay for all the expenses of conducting experiments, but obtaining more and more of that money is not the true goal of scientists!  For modern universities, science is a business, and faculty scientists are just a terrific means to increase their profits!

There are some other ways besides grants to pay for research expenses (see: “Is More Money for Science Really Needed? Part II” , and, “Basic Versus Applied Science: Are There Alternatives to Funding Basic Research by Grants?” ).  It seems to me that new mechanisms for financing science and research at universities in the United States now are badly needed in order to stop the destructive problems caused by the current system (see:  “Could Science and Research Now be Dying?” ).

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE