Monthly Archives: February 2016

MORE SCIENCE Q&A FROM YOU TO DR.M, AND FROM DR.M TO YOU! 

 

Asking questions, answering questions, and questioning answers are vital for education! (http://dr-monsrs.net)
Asking questions, answering questions, and questioning answers are vital for education! (http://dr-monsrs.net)

 

An earlier Q&A session with Dr.M drew a good response (see “Questions About Science From You to Me, and From Me to You!” ), so further interchange should be worthwhile for all visitors.

Dr.M, I’m no good at mathematics!  Can I read and learn about science without needing to use all the equations? 

The answer is “yes!”.  You can learn at a very basic level without needing any math.  Your knowledge then will be somewhat simplified, but that is okay.  As one example, look up a subject or question that interests you on any internet wikisite; you will receive simple descriptions, explanations, and figures, which will provide a basic level of understanding.  But, try to recognize that numbers and quantization are very necessary for doing science and research (e.g., consider the analogy of what would professional baseball be without batting averages and other statistical measures?).

Dr.M asks you: what do you know about how the internet operates?  How does your e-mail travel so quickly to another state or a different country?  How do viruses get into your computer? 

Although it is true that you can use the internet without knowing anything at all about computers, it will be much better if you understand at least the fundamentals.  It’s easy to use the internet to find out more about the internet!

Where can I learn about the big new Zika virus epidemic? 

Use any browser to search on the internet for “Zika virus epidemic” or “Zika virus research”, and you will receive many pages of sites with information.  If you feel that some background is needed, first look on a wiki for “virus” or “Zika virus”.  As a special treat, you can see a fascinating and shocking expose by J. Chatterjee about the old origin of this new epidemic at “What is the Zika Virus Epidemic Covering Up?” !

What do the Big Prizes in science matter to me, Dr.M? 

The several large Science Prizes provide a means for everyone to honor and learn about some really successful research scientists (see: “What Does It Take to Win The Big Prizes in  Science?” , and, “New Multimillion Megaprizes for Science, Part I” ).  Check out some video interviews with the winners on websites for the different prizes; you will see much about both their praiseworthy research work and  their individual personalities (i.e., yes, famous scientists are very interesting people!).

As a graduate student in science, I have decided that I do not want to work in a university!  What should I do to get a good science-related job in business/industry? 

You will need much more than learning about science and research, and you must take the lead in getting that info!  Take or just sit in on a beginning course for business or finance.  If possible, find someone who is now doing what you are aiming for, and ask if you can meet with them to ask a few questions about their job and career.  Some businesses offer short internships that will provide a taste of what working there would be like.  Spend some time thinking about the key difference between what you want to do, and what you would be willing  to do (i.e., could you work as an advertising staffer, computer maintainer, designer, manager, media consultant, salesperson, software writer, survey taker, telephone service agent, etc.)?

Dr.M, why do I as a taxpayer have to help pay for building giant new telescope facilities in Chile and Hawaii?  Those mean nothing to me! 

These gigantically expensive very special research facilities will yield new advanced knowledge about astronomy, astrophysics, and space science, that present telescopes cannot obtain.  These facilities are so very costly that they can be funded only by contributions from multiple nations.  The new research findings will help you only indirectly, by adding to understanding about our universe.  If you feel that your own tax money is being wasted, then you should realize that the portion you are giving to build these new telescope facilities is only a miniscule part of your tax payments; a much greater portion goes for wars and welfare ….. how do you like that?

Where can I find the very latest in new technology, Dr.M? 

I recently recommended several good websites covering this subject (see: “More Science and Research Websites Recommended for You!” ).

I just cannot understand why scientific research has not yet found a cure for either cancer or the common cold!  Please explain, Dr.M! 

You probably are ignorant that some of the many types of cancer now are being cured, thanks to modern research and clinical advances (see: “Progress for Treating and Curing Cancer!” , and, “A Very New Immunotherapy for Cancer Wins the 2015 Lasker-DeBakey Clinical Medical Research Award!” ).  The common cold is difficult to cure or prevent because the causative viruses are constantly mutating and changing; thus, a moving target must be knocked out, but it is impossible to predict where it will be (i.e., what the next mutation might be) before it has changed!

I’m a Full Professor in a science department at a large university, and I am forced to retire next year.  How can I keep doing research and publishing, Dr.M? 

If you are still able to be funded with a research grant, then you might be able to either stay at your present location as a resident researcher, or transfer to another institution as a visiting researcher.  If you don’t have a grant, see if you can find a well-funded colleague at another institution, who will let you work without salary in their lab on their research projects.  For the latter possibility, recognize that you need to be flexible; you might even want to work alongside someone who formerly was your biggest competitor!

Dr.M asks you: how many different ways can glyphosate get into your body?  How much do you now contain? 

Glyphosate is increasingly recognized as being a dangerous poison (see:  “What Happens When Scientists Disagree?  Part III: Is Glyphosate Poisoning Us All?” ).  If a farmer uses the weed-killer, Roundup (Monsanto Corporation), with his corn crop, and the harvested corn later is fed to chickens, how much glyphosate is ingested by humans when the chicken eggs or meat are eaten?  If farmers spread Roundup by aerial spraying, how much glyphosate then is present within the local tap water used for drinking or cooking?  How much glyphosate is present inside you or other people today?  Dr.M says that much more research should be done to answer these worrisome questions!

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE 

ARTUR FISCHER WAS A VERY SPECTACULAR INVENTOR! 

 

Quotations from the late inventor, Artur Fischer! (http://dr-monsrs.net)
Quotations from the late inventor, Artur Fischer!   (http://dr-monsrs.net)

 

I have previously written about such great inventors as Thomas Edison, Nikola Tesla   and Edwin H. Land (see: “Inventors & Scientists”, and, “Curiosity, Creativity, Inventiveness, and Individualism in Science”).  Inventors generally are seen as being separate from scientific researchers or engineering developers, but all these people often have some of the same personal features, such as creativity, curiosity, drive to overcome difficulties, problem solving ability, and, recognition of causes and effects.

A prominent lifelong inventor in Germany, Artur Fischer, just passed away at age 96 and was the holder of over 1,100 patents [1-3].  That number is even greater than the giant number of patents held by Edison!  Although every person reading this is using his inventions, almost nobody can name their discoverer!  I will briefly describe his inventions and career below, so all of you can appreciate his wonderful human spirit.

Life activities of a great inventor!  [1-3]

Born in a small town within Germany in 1919, Artur Fischer was educated in primary school followed by entrance into a vocational school.  He stopped that and then began an apprenticeship with a locksmith at age 13.  He never acquired a high school diploma, and it now is very obvious that he certainly did not need one!.  Following military service in WW2, he returned home in 1946 and worked on small devices for an engineering company.  At age 29 the young entrepreneur started his own company (see: http://www.fischer.de/en/Company/About-fischer ).  Today, the resulting Fischer Group of companies is a very innovative, successful, and large German business employing over 4,000 people, having many subsidiaries and factories in Germany and other countries, and, marketing thousands of products around the world (see:  http://www.fischer.de/en/Company ).

Throughout his life, Artur Fischer liked to think and do in a workshop, which served as his laboratory for experimentation.  His mother  had helped him set up a small workbench, thereby encouraging his early efforts.  His father was a tailor.  Typically, Fischer began his inventions by recognizing some practical or technical need or problem, and then visualizing what changes would accomplish the desired functional solution.

His first big invention involved something every photographer today takes for granted: the burst of light from a camera flash is timed to coincide with the opening of the camera shutter.  In the earlier days of photography that was not the case.  He invented a new method enabling this flash synchronization, and thereby finally obtained a flash photo of his infant daughter, and acquired his first patent (1949); that effort brought him much business success.  He went on to apply this inventive approach to making improvements in a very wide variety of different objects (e.g., a universal holder for boiled chicken eggs that can accommodate a wide range of sizes, edible building blocks for use by very young children, educational toys, etc.).

His best known invention answered a very common question: how to attach screws into  drywall or masonry?  He came up with a new kind of compressible non-rotating plastic plug that was inserted into a small hole drilled in the wall; a screw then was worked into the inserted plug, causing that to expand so the screw became very firmly anchored.  This revolutionary development in 1958, officially known as a Fischer screw anchor, is also called a wall plug, S-plug,  dowel, or wall anchor.  These fasteners are commonly used in construction and by just about everyone (i.e., to hang a picture or attach a shelf onto a wall).  Millions of nylon screw anchors needed for this method now are made by mass production machines every day; they are widely popular everywhere because they are inexpensive and easy to use, work well, and come in a variety of sizes.  Wall plugs continue to be developed further and now even can be made from green materials!  Artur Fischer also developed modified versions of his wall plug that now are used by orthopedic surgeons to hold broken bones together while they heal (i.e., one really good invention often leads to others!).

Artur Fischer later established Fischertechnik, a new division in his thriving company (see: http://www.fischertechnik.de/en/home.aspx ).  Very many children all around the globe know about the special construction toys produced and sold by this business.  Although appearing to be similar to toys, these go far beyond that label and require assembly by the child before it can be used; there are various technical components that each young owner can add to their constructed toy.  Thus, much hidden education is provided within these distinctive products (e.g., designing, dynamics, electrical engineering, mechanics, robotics, software, solar energy, etc.).  They appeal to all modern boys and girls, but also are fascinating for adults to use!

Most recent events!  [1-3]

For his long career as a tinkerer and prolific inventor, Artur Fischer recently was honored by the European Patent Office with the 2014 European Inventor Award for his lifetime achievements.  The family-owned Fischer Group companies has been headed and expanded since 1980 by his son, Prof. Klaus Fischer; this large enterprise now is headed by the third generation grandson, Joerg Fischer.

Artur Fischer has just died, on January 27, 2016.  So that you can get to know a little about this remarkable inventor and see how he thinks and works, I recommend watching 2 brief videos.  First, view a 2014 instructive video, “Artur Fischer in His Own Words – Winner of the European Inventor Award 2014”; here, he tells how he invents and works (with captions translated into English).  Second, watch a 2014 UK video describing his career activities, “Artur Fischer – Wall Plug, Synchronized Flash, and Many More” .

[1]  European Patent Office, 2014.  Artur Fischer (Germany).  Available on the internet at:  https://epo.org/learning-events/european-inventor/finalists/2014/fischer.html .

[2]  Grimes, W., Feb. 8, 2016.  Artur Fischer, Inventor With More Patents Than Thomas Edison, Dies at 96.  The New York Times, International Business, page B12, available on the internet at:  http://nytimes.com/2016/02/09/business/international/artur-fischer-inventor-with-more-patents-than-edison-dies-at-96.html .

[3]  Obituaries, Jan. 28, 2016.  Artur Fischer, inventor – obituary.  The Telegraph (U.K.), available on the internet at:  http://www.telegraph.co.uk/news/obituaries/12140534/Artur-Fischer-inventor-obituary.html .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE

WHAT DOES THE NEW NATIONAL SCIENCE FOUNDATION REPORT SAY ABOUT BIG PROBLEMS FOR US SCIENCE? 

 

SEI 2016 shows current status of scientific research and engineering developments in the US and other countries! (http://dr-monsrs.net)

SEI 2016 shows current status of scientific research and engineering developments in the US and other countries! (http://dr-monsrs.net)

 

The 2016 edition of the extensive and impressive serial report from the National Science Foundation (NSF), Science and Engineering Indicators 2016 (SEI 2016), has just appeared (see: “National Science Foundation Issues New Report on Status of Science, Engineering, and Research” ).  This large document purposely does not directly comment or interpret its figures; however, provision of these data by SEI 2016 leaves their interpretation open.  In this essay I will briefly examine what the new data in SEI 2016 say about several controversial topics and modern problems for science.

The SEI 2016 is available at: http://www.nsf.gov/statistics/2016/nsb20161/#/report , and its brief commentary, The Digest 2016, is available at:  http://www.nsf.gov/statistics/2016/nsb20161/#/digest .  An excellent search page for SEI 2016 is provided at:  http://www.nsf.gov/statistics/2016/nsb20161/#/topics/ .  Citations in the following text all refer to SEI 2016, unless noted.

What is the present status of science and engineering in mainland China?  Could China surpass the US in science and engineering? 

Mainland China now is an extensive political and economic competitor with the US.  Many have the impression that the quality of Chinese science and engineering formerly was deficient, but now has improved and is nearing the level prevailing in other countries, including the US.  SEI 2016 shows that in 2013 the US workforce produced 27% of worldwide research and discovery, while China produced 20% [The Digest 2016, page 4].  Much research and development in China now aims to advance their military, technical,  and industrial capabilities; these efforts strongly depend on Chinese engineering.  Their increasing number of engineers is expected to start producing more science and engineering articles than will the US in 2014 [The Digest 2016, Figure A on page 13].  Since 2005, China already has produced more engineering publications than any other country [The Digest 2016, Figure B2 on page 13].  It seems likely that China’s efforts to advance education and training of their scientists and engineers will stimulate achieving equivalence and then soon will surpass the US output.  Hence, SEI 2016 shows that the US is likely to soon lose its premier status for science and engineering!

What does SEI 2016 say about the funding for basic research, which necessarily precedes what is done later by applied research and engineering developments?  

Data in SEI 2016 deals with both the basic and the applied aspects of research and development.  Excluding money for the Department of Defense, federal support of research in 2013 is given as 45% for basic studies, 41% for applied studies, and 14% for development [Figure 4-12].  I must disagree with their assumption that the many studies funded by the National Institutes of Health all are basic research; thus, I cannot accept the total for basic research given in SEI 2016 as being valid (i.e., definitions of basic versus applied are not provided).  I and many academic scientists are convinced that federal support for basic research has been diminishing, while federal grants for applied research are increasing in number.

What do the figures in SEI 2016 say about the pervasive problem of  hyper-competition for research grants between university scientists? 

Acquiring and maintaining an external research grant now is the major goal for faculty scientists.  At present, there is a vicious hyper-competition between all academic scientists for research grant awards (see: “All About Today’s Hyper-competition for Research Grants” ).  University scientists cannot be blamed for this very problematic situation  because if they do not acquire and hold research grants then they are basically dead.  The SEI 2016 does not directly address the destructive effects of hyper-competition on academic science.   However, the published data do show that only 19% of all applications for research grants from the National Institutes of Health, the largest federal agency making grants for biomedical research, were funded in 2014, and the trend for such funding is decreasing [Table 5-22].  Furthermore, SEI 2016 shows that the total number of doctoral scientist holders working in academic institutions continues to  increase [Appendix Table 5-13], meaning that the numbers of applicants and applications also are rising.  Thus, SEI 2016 documents that the hyper-competition for research grants keeps getting even more severe every year!

What do the new figures in SEI 2016 say about the predicted demise of science and research in modern US universities?

My earlier controversial proposal that university science now is dying (see:  “Could Science and Research Now Be Dying?” ) was based upon my impressions of a declining quality of modern science, large wastage of time by researchers struggling to get more and more research grants, conversion of university research into a business entity where money is everything, de-emphasis on basic research and corresponding increased emphasis on applied research, and, increasing corruption by professional scientists.  That situation is being caused by bad policies and priorities from both modern universities and the current research grant system.

SEI 2106 shows oodles of data that almost everyone will conclude is very solid evidence denying my prediction (i.e., since academic science in the US is doing such a productive job and provides so much of value to the public, then all must be excellent!).  I disagree, because the quality of research studies and publications seems to be decreasing!  The data in SEI 2016 almost entirely are measuring research quantity and largely ignore quality.  The Digest 2016 emphasizes that innovation is very important, and I agree; however, innovation is not measured or estimated for basic versus applied research, which is very necessary in order to evaluate their value.

If everything actually is so very wonderful with modern science in academia, then why are an increasing number of faculty scientists, postdocs, and prospective domestic graduate students so dismayed and dissatisfied?  Why have the number of doctoral scientists and engineers working as full-time faculty members been progressively declining?  Why did only 15.6% of all employed doctoral scientists and engineers work in academia/education in 2013 [Table 3-6]?  Why did 28.1% of all doctoral scientists and engineers now work outside business/industry in 2013 [Table 3-6]?  Why did 20% of all US doctoral scientists and engineers report that they  were working out-of-field because of a change in career or professional interests in 2013 [page of text following Table 3-14]?  All of the above data from SEI 2016 support my controversial proposal!

Conclusion!

It is fair to conclude that SEI 2016 indeed is very useful, but will not answer all the important questions  about modern science!

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE

NATIONAL SCIENCE FOUNDATION ISSUES NEW REPORT ON STATUS OF SCIENCE, ENGINEERING, AND RESEARCH! 

 

SEI 2016 shows current status of scientific research and engineering developments in the US and other countries! (http://dr-monsrs.net)
SEI 2016 shows current status of scientific research and engineering developments in the US and other countries!   (http://dr-monsrs.net)

The National Science Foundation (NSF) has just released an extensive report, Science and Engineering Indicators 2016 (SEI 2016).  It presents the latest figures and trends about the status of scientific research and engineering development in the United States (US) and elsewhere in the modern world; the complete data presently extend through 2013 or 2014.  This very large document is available to all on the internet at:  http://www.nsf.gov/statistics/2016/nsb20161/#/report .  Its accompanying short commentary, The 2016 Digest, is available at: http://www.nsf.gov/statistics/2016/nsb20161/#/digest .

In this article, I will first describe what SEI 2016 is and how it is important.  Then, I will briefly discuss a few important aspects of the newest data from SEI 2016.  These topics are selected because they have widespread general interest, and are very essential starting points for understanding today’s science in the US.  Citations in the following text all refer to SEI 2016, unless noted.

What is SEI 2016? 

New editions of this documentation are prepared every 2 years by the NSF National Center for Science and Engineering Statistics under guidance of the NSF National Science Board.  SEI 2016 presents many quantitative data, tables, and charts about science, engineering, and research in the US and the world.  The new volume is the 22nd in this series and so readily enables good comparisons with past figures.  Its chapters deal with: (1) elementary and secondary mathematics and science education, (2) higher education in science and engineering, (3) science and engineering labor force, (4) national trends and international comparisons for research and development, (5) academic research and development, (6) industry, technology and the global marketplace, and, (7) public attitudes and understanding of science and engineering.

The contents of SEI 2016 are presented for other people to use!  This avoids any need to guess about quantities, comparative figures, or trends.  Mostly it does not include interpretations, discussions of policy issues, or opinions about the data given.  Copies of this biennial report are distributed to the President, Congress, and many high officials involved with science and engineering.

Neither members of the public, nor scientists and engineers, are likely to try to read through all the numbers in tables and charts of SEI 2016!  Instead, they can either (1) read through the short commentary version offered as “The 2016 Digest” (see URL given above), whose PDF version contains only 14 pages of text and 7 pages of figures, or (2) look up specific sections having information about topics of personal interest (see “Search by Topic or Keyword” at:  http://www.nsf.gov/statistics/2016/nsb20161/#/topics/); for the general reader, I believe the best approach is to use this excellent search page.

Some important basic questions are answered in SEI 2016! 

(1)  How many scientists and engineers now are working in the US?  How many are unemployed?  SEI 2016 lists a total of 23,557,000 persons working on some aspect of science and engineering who were employed in the US during 2013 [Table 3-6].  For 2013, 6.7% of all scientists and engineers were working involuntarily on something out of their field [Table 3-14], and less than 4% were unemployed [Appendix Table 3-18].  For all graduate students in science during 2013, 25% study engineering [Table 5-19].

(2)  How many doctoral scientists and engineers are working in industry, and how many work in academia?  What is the trend for academic employment of scientists and engineers?  In 2013, 70.1% of all employed doctoral scientists and engineers were working in business/industry, 15.6% were working in academia/education, and 12.5% were working for federal, state, and local  governments [Table 3-6].  Holders of a doctoral degree in science or engineering who worked as full-time faculty members declined to 70% in 2013.

(3)  What were the salaries for doctoral scientists and engineers working as postdoctoral fellows, members of a science faculty 5 years after graduating, or staffing industries 5 years after graduating?  The median salary for all postdoctoral fellows working on research or development in the US was $45,000 in 2014 [Table 3-18].  Excluding physicians and dentists, the median salary for all doctoral scientists and engineers working at academic institutions (at 4-5 years after graduating) was $85,530 in 2014; the corresponding figure for all engineers in academia was $94,250 [Table 3-13].  Median salaries for doctoral scientists and engineers working in the business sector during 2014 generally are higher than those working in academia.

(4)  What portion of doctoral scientists and engineers working on research or development in the US were born in foreign lands?  What portion of postdoctoral research fellows currently researching in the US were born in foreign lands?  How are these figures changing?  SEI 2016 shows that science and engineering in the US continue to have a large input of workers born in foreign lands.  For postdocs in 2013, this figure was almost 50% [Figure 5-19]; for these foreign-born postdocs, Asians and Pacific Islanders were nearly 70% of the total [text following Table 5-19].  All these figures are trending somewhat higher; in 2013, the number of total scientists and engineers born in foreign lands has grown to 27% [Figure 5-19].

(5)  What portion of faculty scientists and engineers applying for a federal research grant currently get funded?  How is this figure changing from earlier years?  SEI 2016 shows that only 19% of all applications for research support from the National Institutes of Health, the largest federal granting agency for biomedical research, were funded in 2014 [Table 5-22].  The trend for funding in the period from 2001 through 2013 shows a progressive decrease [Table 5-22].

(6)  How does the US compare with other nations for the total amount of money invested to support science and engineering activities performed in the US?  In 2014, the US government spent over $132 billion to support all research and development by scientists and engineers [Figure 4-17].  Defense expenses for research and development accounted for 52.7% of that total [Table 4-17].  For the same period, US industries spent over $322 million for business research and development [Table 4-7].

Concluding discussion! 

SEI 2016 is a most valuable and extensive documentation for anyone seeking facts and figures about modern science and engineering.  It furnishes a very useful means to evaluate the present status of scientific research and engineering development in the US and other nations, and to recognize current trends.  Clearly, it shows that both the US government and US industries spend lots of money on science and engineering activities; most of these billions of dollars come from US taxpayers, who then receive both new knowledge and new commercial products!

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE