PAGE ON BIG PROBLEMS:

IT’S NOT SO EASY TO CONDUCT SCIENTIFIC RESEARCH AMIDST NATIONAL TURMOIL! 

 

International awareness of Venezuela in 2017 is needed! (http://dr-monsrs.net)
International awareness of Venezuela in 2017 is needed!   (http://dr-monsrs.net)

 

Everyone knows that science and research now are active in almost every country all over the world.  Many graduate students in science, and very many doctoral scientists employed to conduct research here, were born in foreign countries; thus, science and research in the U.S. have a distinctively global character.  These facts commonly lead to a false assumption that scientific research is proceeding and progressing nicely everywhere.  Actually, history shows different examples where events completely outside science can disrupt the practice and progress of research!

This dispatch considers the present situation for professional scientists and science students in Venezuela.  I bring this up because many academic scientists in  the U.S. and other Western countries complain loudly about the recurring shortage of money for support of their research, but fail to see that faculty scientists at certain foreign universities now must struggle just to get enough food to eat; that situation completely overwhelms all the many ‘normal problems’ in today’s academic research!

Brief background about Venezuela! 

Venezuela is an independent constitutional republic of some 31 million people located on the Northern edge of the South American continent.  It is nominally a rich country due to its very large deposits of oil and other natural resources; despite the recent political conflicts, some gasoline produced from Venezuelan oil is widely sold here in the U.S.  Venezuela has several universities and big hospitals in its largest city, Caracas.  Its current national leader, Nicholás Maduro, is a socialist who has responded to increasing economic difficulties (hyperinflation) and popular disapproval of current government policies by imposing dictatorial rule, capital controls, and political repression.

A university scientist describes how the current turmoil in Venezuela affects  research and teaching in its universities! 

Faculty scientists in the U.S. often remain blissfully unaware that their own career misgivings are minuscule compared to scientists in certain other countries that are seized with such a great turmoil that daily life descends into a struggle only to eat and survive.  Venezuela now is the prime example of such an unfortunate situation.

Prof. Benjamin Scharifker courageously has just authored a dramatic description of current university science in Venezuela, “Science struggles on in my ravaged country”, published within the May 11, 2017, issue of Nature (volume 545, page 135).  He is an Emeritus Professor continuing to conduct research at the Simón Bolívar University, and also serving as a Rector at the private Metropolitan University; both institutions are located in Caracas.

He describes the present difficult situation in graphic detail and with heartfelt anguish.  A sampling of quotations from his published report includes: “concomitant shortages of food and medicine”, “annual inflation rate in excess of 500%”, “A full professor makes much less than US$100 a month”, “we did not have running water in the laboratory”,  “the brain drain in Venezuela is staggering”, and, “How do we cope?  We don’t; we just try to survive.”  Most reading his story have never personally encountered the extreme situation described by Dr. Scharifker, and probably cannot readily believe or even imagine that any faculty scientists and science students could be facing this in 2017!

The large crisis in Venezuela soon probably will advance to cause the shutdown of universities and all their activities for teaching, scientific research, and other scholarly pursuits, despite the determination of students and faculty to carry on no matter what happens.  Nevertheless, a large number of university faculty and graduate students already have left Venezuela in order to be able to continue conducting their research and education; this brain drain is very sad, since I know that Venezuela previously has produced some renowned research scientists!  Prof. Scharifker comments that he hopes there will not be further bloodshed of university students in their public demonstrations and protests!

What are the main messages for scientists in the West? 

This situation in Venezuela is gory!  Let us hope that it does not spread to any other countries!  Many of us who sincerely complain about the decayed and degenerated current condition of scientific research at our universities, must recognize that our own troubled situation is drastically better than what our fellow scientists and students in Venezuela must face every day!

Science never exists in a vacuum, but always takes place within some social and political context.  Scientific research can be corrupted either internally (e.g., by scientists and science companies with dishonesty or greed) or externally (e.g., by economics, politics, or society).  Scientists everywhere should simultaneously be citizens, and so must take part in national and local disputes, governmental issues, and politics; just because we are always busy with researching and teaching is no reason to avoid participating personally in these areas.

In turn, science and research interact with the external milieu to produce some changes that help everyone (e.g., advanced technology, better education, improved public health and safety, innovative new concepts, new medical and dental therapies, the internet, etc.).  Thus, science and society usefully interact with each other!

Concluding discussion! 

From my viewpoint, I believe the following conclusions are warranted.  (1) Scientists are privileged people who should actively accept their simultaneous role as citizens in their country!  (2) Complainers about not enough money for research, or counterproductive policies in modern academia, must recognize that everything could get very much worse!  (3) Let us give our fellow faculty scientists and science students in Venezuela our hopes for their better future!

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE

ON CORRUPTION IN THE PEER REVIEW PROCESS!  DOES IT MATTER?    

 

Various thoughts run through the mind of peer reviewers! (http://dr-monsrs.net)
Various thoughts run through the mind of peer reviewers!  (http://dr-monsrs.net)

 

Manuscripts submitted for publication in science journals, and applications for research grant funding of proposed investigations, both must be critically evaluated to determine  acceptance or rejection.  For science, these examinations are termed ‘peer review’ because they utilize the opinions of other scientists having expertise and experience in the research topic involved.  Peer review aims to objectively judge quality and merit.  A very informative history of peer review in science, “In Referees We Trust?”, was recently published by Melinda Baldwin in the February issue of Physics Today [1].

Although most scientists accept the usefulness of the peer review process, several operational issues can compromise it (e.g., conflicts of interest).  Today’s essay examines some current problems in peer review that are encouraged by the corruption within modern scientific research (see: “More Hidden Dishonesty in Science is Uncovered!”).  I am talking here about deceitful lies and outright cheating!

What stimulates corruption in modern science? 

Job pressures in both academia and commercial industry negatively impact scientists working on research.  At universities, strong pressures to obtain important results more quickly, produce more research publications, and acquire more research grants, all can cause unethical behavior in attempts to find an easier way to satisfy these demands.  At industrial companies, evaluations of a new commercial product can be compromised by pressures to only acquire data supporting its merits and to ignore any data denying its desired qualities.  At both locations, corruption results in some expert scientists not being rigorously honest and making false judgments during peer review.

Intense job pressures at modern universities largely are due to the conversion of academic science and scientists into business entities.  That ongoing change means that: (1) money now is everything, (2) quantity is much more important than quality,  and (3) the nature of scientific research is fundamentally altered (i.e., the chief goal is to get more money (from research grants), instead of getting more new knowledge; applied research is much more valued than is basic research).  These conditions encourage judgments by peer reviewers to become distorted.

Since research scientists are only human, it always is hard to criticize a collaborator, personal friend, or teacher.  Similarly, it is not so easy to avoid being more harsh when reviewing some research competitor.  These common psychological inclinations are made much worse in academia by the vicious hyper-competition for research grant awards (see “All About Today’s Hyper-Competition for Research Grants” ).  Getting and maintaining research grant awards now is a life-or-death matter for all faculty scientists.  For industrial scientists, the concept of loyalty can become wrongly centered on the employer at the expense of dedication to the integrity of science.

Actual examples of distortions and inadequacies in peer review! 

Some real faculty scientists I have known sought to have ‘friends’ in the peer review boards evaluating their research grant applications.  Others worked to have ethnic counterparts supervise the peer review of their output.  These successful tactics degrade the objectivity of peer review and make it only a game of strategy.  Officials at federal granting agencies do try to keep peer review objective by requiring reviewers from the same institution as the author being evaluated to leave the room when that submission is being discussed; of course, input from any absent reviewer still can be given at other times and in other ways.  Journal publishers use analogous rules to try to prevent favoritism by manuscript referees.

How frequently is peer review in science inadequate? 

A distinguished former Editor-in-Chief of the very prominent New England Journal of Medicine, Dr. Marcia Angell, stated in 2009 that “It is simply no longer possible to believe much of the clinical research that is published” [2].  Dr. Richard Horton, Editor-in-Chief of the prestigious clinical journal, The Lancet,  stated in 2015 that “Much of the scientific literature, perhaps half, may simply be untrue” [3].  These dramatic quotes are strong evidence that the process for peer review is defective, the objectivity of scientists as peer reviewers is decayed, and examples are shockingly frequent!

Why are ethical aberrations in peer review tolerated by professional scientists?

Working scientists usually view this problematic situation as being part of the current degeneration in modern science.  Few scientists try to change anything; it much easier to just keep quiet.  Nevertheless, some exceptional ‘whistleblowers’ like Dr. Peter Wilmshurst have the personal strength to expose ethical wrongdoing in science (see: “Whistleblowers in Science are Necessary to Keep Research and Science-based Industries Honest!”).  Wilmshurst describes many examples of outright corruption, including amazing cases where known miscreants and liars continued to publish research reports or head an ethics board for many more years [4,5].  Lawsuits for misconduct in research today are frequently reported in the media (e.g., see: “Whistleblower Sues Duke University for Acquiring Research Grants via Falsified Research Publications!”).  Admittedly, dishonesty in academia and industry often is covered up by insincere investigations.

What can be done to make peer review more meaningful?  

Several factors need to be changed in order to remedy inadequate peer reviewing and the growing corruption in science: (1) graduate school education of scientists must strongly emphasize the necessity for total honesty by all scientific researchers, (2) evidence for cheating and dishonesty must be more vigorously sought and investigated, (3) the penalties for research misconduct must be made much harsher, (4) nondestructive alternatives to the current hyper-competition for research grant funding must be developed, and, (5) the process of peer review must be separated from the distorting influences of career progression, money, and unethical trickery.  Whether making these changes are actually possible, and whether they will have the desired beneficial effects for science, remain to be seen.  Changing the status quo always is extremely difficult!

Some attempts are underway to make science and peer review be better.  Recent establishment of very large philanthropic support for scientific research liberates some small number of lucky scientists from the perverting influence of the research grant system (e.g., see: “Getting Rid of Research Grants: How Paul G. Allen is Doing It!”); of course, that approach cannot extend to the multitude of other scientists.  Some new journals avoid the traditional practices for peer review (e.g., openly publishing everything, removing the secrecy of appointed reviewers, having direct discussions between authors/applicants and their reviewers, etc., [1,6]).   A critical discussion of corruption in science journals by Piotr Sorokowski and colleagues is published in the March 22 issue of Nature (see: “Predatory Journals Recruit Fake Editor”) [6]; this  convincingly reveals that peer review of manuscripts often is only a fraudulent sham.

Do you wonder how inadequacies in peer review matter to you personally? 

Research corruption can immediately hurt innocent people and later cause other researchers to waste time and money when they base new experiments upon false data published in journals.  You yourself might become totally convinced about the inadequacies in peer review when some honest physician gives you an approved new medication that is based on published research falsely showing almost no dangerous side effects.  Peer review has considerable practical importance to you and to everyone else!

Concluding remarks! 

I must emphasize that many research scientists do not surrender to the common job pressures and do sincerely try to participate in peer reviewing with unemotional  evaluations of merit.  Any distortions of ethical standards by scientists subvert the true aim of science.  Much greater effort to avoid all dishonesty in modern science should also help prevent the impending death of scientific research at universities (see: “Could Science and Research Now be Dying?”).

 

[1]  Baldwin, M., 2017.  In Referees We Trust?  Physics Today  70:44-49.  (Available on the internet at:  http://physicstoday.scitation.org/doi/10.1063/PT.3.3463 ).

[2]  Angell, M., 2009.  Drug Companies & Doctors: A Story of Corruption.  The New York Review of Books, January 15, 2009 issue.  (Available on the internet at:  http://www.nybooks.com/articles/2009/01/15/drug-companies-doctorsa-story-of-corruption/ ).

[3]  Horton, R., 2015.  Offline: What is Medicine’s 5 Sigma?  The Lancet, April 11, 2015.  385:1380.  (Available on the internet at:  http://thelancet.com/journals/lancet/article/PIIS0140-6736(15)60696-1/fulltext ).

[4]  Robbins, R.A., 2012.  Profiles in Medical Courage: Peter Wilmshurst, the Physician Fugitive.  Southwest Journal of Pulmonary and Critical Care, April 27, 2012/4:134-141. (Available on the internet at:  http://www.swjpcc.com/general-medicine/2012/4/27/profiles-in-medical-courage-peter-wilmshurst-the-physician-f.html ).

[5]  Smith, R., 2012.  Richard Smith: A Successful and Cheerful Whistleblower.  The BMJ (British Medical Journal) Blogs, October 10, 2012.  (Available on the internet at:  http://blogs.bmj.com/bmj/2012/10/10/richard-smith-a-successful-and-cheerful-whistleblower/ ).

[6]  Sorokowski, P.,Kulczycki, E., Sorokowska, A. & Pisanski, K., 2017.  Predatory Journals Recruit Fake Editor.  Nature 543:481-483.  (Available on the internet at:  http://www.nature.com/news/predatory-journals-recruit-fake-editor-1.21662 ).

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE

 

BIG JOB PROBLEMS FOR SCIENTISTS GET EVEN BIGGER IN 2017! MUCH MORE HELP IS NEEDED!

 

Much more money for research only makes science get even worse in 2017! (http://dr-monsrs.net)

Much more money for research only makes science get even worse in 2017!    (http://dr-monsrs.net)

Chris Woolston reports that Nature’s latest survey of job satisfaction by professional researchers “uncovered widespread dismay about earnings, career options, and future prospects”, and found that 1/3 of the respondents are unhappy [1] (see “Salaries: Reality Check” )!   Such a high level of job dissatisfaction by professionals is truly shocking!

Today, I am updating my dispatch from last year, “Job Problems for Scientists Get Bigger in 2016!”, because there is far too little effort by government officials, university administrators, leading research scientists, science societies, and the public to stop this very destructive situation!

What exactly are the biggest problems facing today’s research scientists?  

The largest problems currently damaging research are: (1) money (i.e., government agencies for science do not have enough money to support research by the ever-increasing number of doctoral scientists), (2) modern universities regard science departments as business entities where money is everything, and making important discoveries is not the primary goal, (3) applied research is being emphasized to the detriment of basic research, and (4) corruption in research is increasing and threatens the integrity of science.  This situation is much worse in academia than in industry (see “The Biggest Problems Killing University Science Still Prevail in 2016!” ).

Working research scientists begin to speak out!  

Harsh opinions of the ongoing problems for science and research are held by many faculty scientists, research associates, postdocs, and graduate students around the world.  Woolston’s figures reveal that 39% of all the different scientists responding would not recommend a research career [1]!

“There is no future in a research career in Italy” is stated by a female Italian molecular biologist working in Naples [1]!  A Ukranian postdoc working on physics in Australia does not recommend a science career to people who ask him [1]!  A faculty geneticist in Germany states, “Many people who wanted to do research end up as salespeople at some company” [1]!

Won’t more money for science solve these current problems?  

The public gives money for research via paying their annual taxes (i.e., all money in U.S. research grants comes from the taxpayers!).  Many people also donate money in response to repeated tearful cries for ‘more money to support more scientific research’.  Unfortunately, history shows that increased research funding never solves these grave problems!  More money is not the answer!

My view is that any giant new increase in research support only makes the current problems get even bigger (see “Huge Additional Money for Research Will be Bad for Universities and Their Science!” ).   Effective maneuvers, such as reducing the number of new doctoral scientists produced every year, and emphasizing quality over quantity when evaluating scientists and their research, are overwhelmed by the ongoing commercialization of science at modern universities.

The large practical problems with money are directly caused by bad policies of universities and the federal science agencies.  These causes and their effects are strongly interwoven, and combine into nothing less than a system problem!  Providing more money or reforming one or two destructive conditions are not enough; instead, the entire system must be remodeled or replaced! 

My answers to a few important ‘why questions’!

(1)  Why do scientists work for years to earn a Ph.D., just to have so many job problems in academia?  My best answer is that new doctorates in science increasingly are using their degree and research skills in jobs outside academia!

(2)  Why is science at universities and medical schools now a business?  The best answer is both simple and direct: because it provides big financial profits!

(3)  Why don’t professional scientists complain and try to change the system for funding research?  In the U.S., they are very afraid that any such activity would doom chances of getting their research grant(s) renewed!

(4)  Why don’t members of Congress and the presidents of national science societies act to change the present system for funding research?  Everything is very entrenched, and it always is extremely hard to change the status quo.  As the traditional saying goes, ‘Do not rock the boat’!

Will career problems for faculty scientists become even bigger in 2017?  

For FY2017, the proposed budget for all federal expenses increases by 4%, which is $4.2 trillion dollars [2,3]!  Science and research will receive a small portion of that total [2,3].

In addition to funding for research projects, there are several special targeted research programs termed ‘initiatives’.  Those include the ‘Precision Medicine Initiative’ prompted by the former President, and the ‘Cancer Moonshot’ urged by the former Vice-President [2-4].  For just these and several other initiatives, the U.S. could spend over $6.9 billion dollars in FY2017 [5]!  The funding for initiatives is on top of the nicely increased governmental funding for regular research projects [2-5].

It is anticipated that the new budget of $8 billion for the National Science Foundation in FY2017 will permit thousands more new research grants to be awarded to faculty scientists [5].  That sounds like a very substantial increase, but the rate for applications being funded will only increase from 22% to 23% [4]!  Thus, the intense hyper-competition between all academic scientists to get research grants will hardly be lessened!

All the well-publicized debates and arrangements made by Congress for 2017 do not really concern science and research, but are only posturing and trade-offs of political favors [e.g., 5].  My conclusion is that the new large increases in funding for research will only make the big problems in science become even bigger, so 2017 will be much more distressing for scientists than was 2016!

Want to understand more about causes and effects? 

If so, please examine some of my earlier articles!  For money in academia, see: “Money Now is Everything in Scientific Research at Universities!”.  For the vicious hyper-competition to get research grants, see “All About Today’s Hyper-Competition for Research Grants!” .  For mechanics of the current research support system, see “Three Money Cycles Support Scientific Research!” .  On the growing commercialization of science in universities, see “What is the Very Biggest Problem for Science Today?” .  For corruption in research, see: “Whistleblowers in Science are Necessary to Keep Research and Science-based Industries Honest!” , and, “Why is it so Very Hard to Eliminate Fraud and Corruption in Scientists?”.

Concluding remarks! 

Several big and very difficult problems confront today’s research scientists, and are getting even worse in 2017!   If the present downward course is not changed soon, the end result will be the death of science and research at universities (see:  “Could Science and Research Now be Dying?” ).  To rescue academic science, big changes must be made to the entire system for modern scientific research!  The system is not able to resolve its own problems, so much more external help is needed.

 

[1]  Woolston, C., 2016.  “Salaries: Reality Check”.  Nature  537:573-576.  Available on the internet at:  http://www.nature.com/nature/journal/v537/n7621/full/nj7621-573a.html .

[2]  Office of Management and Budget, 2016.  “Fiscal Year 2017 Budget of the U.S. Government, Investing in Research and Development”.  U.S. Government Printing Office, Washington, D.C.  PDF pages 26-28.  Available on the internet at:  https://www.govinfo.gov/content/pkg/BUDGET-2017-BUD/pdf/BUDGET-2017-BUD.pdf .

[3]  J. Tucker and L. Koshgarian, 2016.  “Fighting for a U.S. federal budget that would help all Americans” .  Available on the internet at:  https://www.nationalpriorities.org/analysis/2016/president-obamas-2017-budget/ .

[4]  H. Ledford, S. Reardon, R. Monastersky, A. Witze, and J. Toliefson, 2016.  “Obama makes risky bid to increase science spending.  Nature News (Feb. 10, 2016).  Available on the internet at:  http://www.nature.com/news/obama-makes-risky-bid-to-increase-science-spending-1.19316 .

[5]  S. Karlin-Smith, B. Norman, and J.Haberkorn, 2016.  “Biden’s farewell gift: Cancer moonshot helps pass $6.3 billion research bill”.  POLITICO (December 7),  Available on the internet at:  http://www.politico.com/story/2016/12/joe-biden-cancer-moonshot-bill-232342 .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE

 

HUGE ADDITIONAL MONEY FOR RESEARCH WILL BE BAD FOR UNIVERSITIES AND THEIR SCIENCE!

 

There is never enough money for scientific research! (http://dr-monsrs.net)
There is never enough money for scientific research! (http://dr-monsrs.net)

 

Universities have a long tradition as being repositories of knowledge, and, centers for advanced education, scholarly studies, and scientific research.  Modern universities in  the U.S. have had vexing problems paying for their many programs and diverse activities, so tuition is raised year after year.  Faculty in science departments and medical schools conduct studies financed by research grants issued from governmental science agencies.  That external source of money now also pays for very many non-science operations and activities.  The end result is that scientific research at universities has been converted into a business venture providing extensive profits for money-hungry universities.

What has this recent change done to faculty scientists, science departments, and science education at universities?  My answer is that any giant increase in research grant funding will make many current problems for university science get worse!  My last dispatch covered the bad effects of a huge increase in research funding upon faculty scientists and their research efforts (see: “Huge Additional Research Money Will Be Bad for Faculty Scientists and Their Investigations!” ) [1].   Today’s essay presents my reasoning about its bad effects upon universities!

Background: What causes the perennial shortage of  money for university research? 

The direct causes of the shortage of money for research are known and were explicitly listed in the preceding article [1].  The ultimate causes are the bad policies and destructive activities of: (1) modern universities, and (2) the federal science agencies.  While these very large institutions have generated many research advances in basic and applied science, they also have created very difficult unsolved problems in university science (see:  “The Biggest Problems Killing University Science Still Prevail in 2016!” ).

Foreground: How do these ultimate causes presently operate? 

Money collected from taxpayers is awarded by the U.S. governmental science agencies as research grants to academic institutions (i.e., universities, medical schools, and research institutes).  Faculty scientists at universities must win a research grant, or they are unable to conduct any research investigations.  Every year, more and more doctoral scientists compete to acquire research grants; the intense struggle to win federal support for research is so enormous that it must be termed a hyper-competition (see:  “All About Today’s Hyper-Competition for Research Grants!” ).  This battle to get research grants means that most faculty scientists today spend more time working on grant applications than working on experiments in their lab.

Granting agencies of the U.S. national government have a certain pool of taxpayer dollars available to disperse every year for a large slate of administrative and regulatory activities, as well as for support of scientific research.  Priorities and proposals for funding must be harshly evaluated.  Many requests cannot be funded; the National Institutes of Health, which  is the largest government agency providing grants for biomedical and hospital research, was able to fund only 18.3% of all applications for support of research projects in 2015 [2].

Three cyclic movements of money support scientific research and determine how modern U.S. universities organize faculty research and operate science departments (see:  “Three Money Cycles Support  Scientific Research!” ).  These mechanisms cause substantial changes from academic traditions.  In particular, they make research into strictly a business activity.  Universities then regard their faculty scientists as busness employees whose main job is to produce profits for their employer by acquiring research grants.  This changes the entire standard concept of what basic scientific research is for (i.e., generation of new knowledge and discovery of the truth), and, converts faculty scientists into businessmen and businesswomen.

How would adding big money for research grants affect science at universities? 

Some good effects for university science include: (1) a greater number of faculty scientists will receive research grants and thus be able to perform research investigations, (2) more faculty grantees will receive full funding instead of only partial funding (i.e., partial funding necessarily always restrains what can be done), and, (3) additional universities would be able to participate in new ‘big science’ projects.

Many negative effects also can be recognized: (1) universities, their science departments, and faculty scientists now all are business entities; (2) the total income acquired in each year becomes the standard measure for quality of faculty scientists, science departments, and entire universities;  (3) since research results now are increasingly for sale (see:  “How Science Died on 9/11” by Kevin Ryan and Paul Craig Roberts ), there will be increased cheating at research and more frequent allegations of research misconduct by university faculty employees; (4) science departments will have many more involvements with companies and lawyers, and, will evolve to become either close partners or commercial competitors of businesses involving pharmaceutical products, engineering developments, and new technologies; (5) the number of science faculty holding an untenured soft-money appointment (i.e., their entire salary comes from their research grants) will increase since that change substantially decreases expenditures for hard-money salaries; (6) new buildings will be constructed to house shared research labs for all the new soft-money faculty; (7) teaching of science students in graduate schools will expand to include courses on running a business, business law, dealing with finances, and other subjects needed by doctoral scientists working in commerce and industry; and, (8) as a result of all these effects, many more students entering U.S. graduate schools to prepare for a career in science at universities will change their aim to working in industrial research.

Concluding remarks! 

The conversion of university science into a business solves financial problems for modern universities, but also creates some new and very destructive difficulties.  In particular, shifting scientific research into a profit-seeking business causes degradation of university science and degeneration of faculty scientists.

The entire system for supporting scientific research at universities needs to be changed!  If left untouched, today’s system problem in academic science is so grave that it even could result in the death of university research (see:  “Could Science and Research Now Be Dying?” )!  New ways to support research in academia are badly needed, and could stop the current decay, corruption, and waste of money and time in modern university science.

 

[1]  Dr.M, 2016.  “Huge Additional Research Money Will Be Bad for Faculty Scientists and Their Investigations!”  Available on the internet at:  http://dr-monsrs.net/2016/10/25/huge-additional-money-for-research-will-be-bad-for-faculty-scientists-and-their-investigations/.

[2]  NIH Research Portfolio Online Reporting Tools (RePORT), 2016.  “Research Project Success Rates by NIH Institute for 2015”  Available on the internet at:  https://report.nih.gov/success_rates/Success_ByIC.cfm .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE

HUGE ADDITIONAL RESEARCH MONEY WILL BE BAD FOR FACULTY SCIENTISTS AND THEIR INVESTIGATIONS! 

 

There is never enough money for scientific research! (http://dr-monsrs.net)

There is never enough money for scientific research!   (http://dr-monsrs.net)

 

Liberals, and even many normal people, feel that the serious problems facing science at modern universities in the U.S. can all be resolved by providing much more money for research studies.  They claim that the total of $132,500,000,000 spent for research in 2014 [1] still is not enough!!  They imagine that dramatic discoveries then would produce cures for more diseases, develop robots to do everyone’s housework, lead to free electricity, etc., if only huge additional dollars would be given for research by university scientists!

I totally disagree!  More money for university research is not the answer to these problems!  Giant increases in research funding would only make the present problems for faculty scientists even worse!  This essay briefly presents my reasoning about its bad effects upon faculty scientists and their research!  The following dispatch will cover its bad effects upon U.S. universities!

Background: What causes the perennial shortage of  money for university research? 

The direct causes of the shortage of money for research are: (1) there now are too many scientists, (2) more new doctoral scientists are graduated every year, (3) more foreign scientists move here to work on research every year, (4) there is enormous wastage in research grants (see:  “Wastage of Research Grant Money in Modern University Science” ), (5) many purchases used for research are duplicates and/or are not justified, (6) the research grant system has no provision for trying to save money (i.e., the working rule is to never have any grant funds left over), and (7) university science now is just a  business where financial profits are everything.  All that is really necessary to greatly increase the funding for research in universities is to decrease or stop these causes!

The ultimate causes are the misguided policies and destructive activities of: (1) modern universities, and, (2) the federal agencies awarding research grants.  While both these very large institutions have been the basis for many research advances in basic and applied science, they also have created some very big problems for science at universities (see: “The Biggest Problems Killing University Science Still Prevail in 2016! “ ).

Foreground: How do these ultimate causes presently operate? 

Money collected from taxpayers is awarded by the U.S. federal science agencies as research grants to academic institutions (i.e., universities, medical schools, and research institutes).  Faculty scientists researching at these institutions operate as major providers of scientific research.  Without winning a research grant, faculty scientists are unable to conduct any research investigations.  Every year, more and more doctoral scientists are seeking to acquire research grants; the intense struggle to win federal funding for research is so enormous that it must be termed a hyper-competition (see:  “All About Today’s Hyper-Competition for Research Grants!” ).  This vicious battle to get research grants means that most faculty scientists today spend more time working on grant applications than working on experiments in their lab.  The annual rise in the number of new applicants and seekers of multiple research grants makes hyper-competition get worse every year.

Granting agencies of the U.S. national government have a certain pool of taxpayer dollars available to disperse every year for a large slate of administrative and regulatory activities, as well as for support of scientific research.  Priorities and proposals for money must be harshly evaluated, and not every request can be funded.  The National Institutes of Health, which  is the largest government agency providing grants for biomedical and hospital research, was able to fund only 18.3% of all applications for support of research projects in 2015 [2].  The granting agencies thus have a strong influence and control over which research areas and which scientists get funded.  Many academic scientists believe that basic research, where practical usage is not a goal, is disfavored, while applied research, which aims to develop or improve commercial products, is promoted.

How would adding lots more money affect science faculty and their research? 

More money for scientificstudies at universities will have some good effects, but to completely solve the shortage of research support would require trillions of dollars!  The chief improvements would be that a greater number of university faculty scientists will be able to do research investigations, and more will receive full funding instead of only partial funding (i.e., partial funding necessarily always restrains what can be done).

Many negative effects of adding a huge amount of dollars for the support of faculty research can be recognized: (1) there will be a large increase of foreign scientists seeking funding here, thereby causing the hyper-competition for research grants to become even worse; (2) the entire aim of scientists for making research discoveries and finding the truth will officially change to winning more dollars from research grant awards; (3) the identity of faculty scientists as businessmen and businesswomen dedicated to acquiring more profits for their employer will be solidified; (4) since research results now are increasingly for sale in the U.S. (see:  “How Science Died on 9/11” ), increased pressure will build to cheat in order to hasten production of pseudo-discoveries and published research reports; (5) the number of science faculty with a soft-money appointment (i.e., their entire salary comes from their research grants) will be greatly increased in order to get larger financial profits for the universities; (6) science faculty will be seen only as transient employees and renters of lab space, meaning that many will relocate soon after receiving a new research grant award; and, (7) the whole nature of evaluating faculty scientists for the quality of their research activities will be transformed into counting the quantity of dollars acquired from research grants.

A very brief discussion! 

Science at universities now is a money-hungry business!  The nature of science, research, and scientists has been changing and will shift further with any huge increase in research funding!

Concluding remarks! 

Providing much more money for research will make the current bad problems for academic scientists get even worse!  If left as they are, today’s problems in science are so grave that they even could result in the death of university research (see:  “Could Science and Research Now Be Dying?” )!

There is no simple or easy solution to these big difficulties because all the causes combine into a system problem.  Fixing only one or two parts of this system problem will not resolve anything!  The entire system for supporting scientific research needs to be changed in order to stop both the current degradation of faculty scientists and the degeneration of science at universities!

 

[1]  Sargent, J.F., for the Congressional Research Service, 2014.  The U.S. Science an Research Workforce: Recent, Current, and Projected Employment, Wages, and Unemployment.  Available on the internet at: http://www.fas.org/sgp/crs/misc/R43061.pdf .

[2]  NIH Research Portfolio Online Reporting Tools (RePORT), 2016.  “Research Project Success Rates by NIH Institute for 2015”  Available on the internet at:   https://report.nih.gov/success_rates/Success_ByIC.cfm .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE

JOB PROBLEMS FOR SCIENTISTS GET BIGGER IN 2016: HELP!

 

The biggest problem for scientists is the entire SYSTEM for conducting research! (http://dr-monsrs.net)
The biggest problem for scientists is the entire SYSTEM for conducting research! (http://dr-monsrs.net)

 

The international science journal, Nature, has just released the results of its 2016 survey of job satisfaction by scientists and other professional research workers [1].  The new survey results are skillfully reported by author, Chris Woolston (see“Salaries: Reality Check” ).  This survey found that “nearly 2/3 of the 3,328 who responded to the question say that they are happy with their current job” [1]; that is good news, but the exact same figures also show that 1/3 of the respondents are unhappy!  The author concludes that the new survey “uncovered widespread unhappiness about earnings, career options, and future prospects” [1]!  Such a high level of job dissatisfaction is both amazing and worrisome!

My dispatch today discusses the shocking results of this 2016 survey.  For background information, please see my earlier articles on “Why Are University Scientists Increasingly Upset With Their Job?  Part I” , and, “Part II” .

Key features about the 2016 survey in Nature [1]!

Every 2 years Nature surveys salaries and job satisfaction with its many worldwide readers.  All in the survey are self-selected, meaning that those who are strongly disheartened or upset will be more likely to respond.  The respondents work in diverse positions, including everything from agricultural research to engineering; research workers in academia range from Postdocs to Full Professors.  The survey results are nicely broken down by age, geography, discipline in science, salary level, amount of job satisfaction or dissatisfaction, positive or negative effects of certain job conditions, and, biggest influence on career progression.  Woolston’s report on this 2016 survey is eminently readable (see:http://www.nature.com/nature/journal/v537/n7621/full/nj7621-573a.html )!

Notable results in this latest survey of researchers [1]! 

Money is the chief influence on scientists for creating positive or negative feelings about their job.  It determines their salary, pay raises, position, ability to do research studies, security, and future prospects.  Many report they are making financial sacrifices by pursuing a career in science [1].  Almost half the responders say that “the main challenge they face is competition for funding” (of their research) [1]. On the other hand, less than 20% of responders working in non-research positions listed competition for funding as a major problem; that probably is the chief reason they work in non-research jobs.

Geography has a major role in determining both salaries and job satisfaction for scientists, largely reflecting the status of the economy within different countries. At least 50% of responders in 8 nations believe job prospects now are worse than for previous generations; these include Brazil, France, Germany, Italy, Japan, Soain, United Kingdom, and, United States [1].  Only 2 countries are listed where around 70% see job prospects now as being better than for previous generations (i.e., China, India) [1]; it seems likely that several other nations are in this group, but did not have sufficient responders to be listed.

Significant job problems for scientists beyond the very frequently cited harsh competition for research support funds d(see:  “All About Today’s Hyper-Competition for Research Grants” ) had only low levels of response, except for “lack of appropriate networks and connections” [1].  Scientists holding non-research jobs selected “lack of appropriate networks and connections” and “unwillingness or inability to sacrifice personal time or time with family” as their biggest job problem [1].

Direct quotations by working research scientists [1]!  

Many quotations from individual scientists are notably included in Woolston’s report [1].  These give a human side to the statistics reported, and some are very dramatic!

“There is no future in a research career in Italy” is stated by an Italian molecular biologist working in Naples [1].  She sees many young Italian scientists now relocating to other countries where their career path will not be so very difficult as in Italy [1].  Clearly, something must be extremely amiss to elicit this kind of explicit opinion!  Some other countries in Europe also are facing large difficulties in supporting research due to the condition of their national economy.

A Ukranian postdoc working on physics in Australia does not recommend a science career to people who ask him [1].  A faculty geneticist in Germany concurs and states, “Many people who wanted to do research end up as salespeople at some company” [1]!  Most of the public is blissfully unaware of these strongly negative feelings by scientists.

Are there other big problems besides money for today’s research scientists?  

Yes!  Several other big problems are particularly destructive for scientists working in academia (see: “The Biggest Problems Killing University Science Still Prevail in 2016!” ).  The increasing corruption in scientific research is not mentioned in the 2016 survey, but is painfully felt by faculty scientists.  Management of time is a very general difficulty for almost all academic scientists.

The large practical problems with money are directly caused by the bad policies of universities and of national research granting agencies or programs.  These causes and their effects are strongly interwoven, and combine into nothing less than a system problem!  It will not be enough to provide more money or to reform one or 2 conditions; instead, the entire system must be remodeled or replaced!

Many people do not see the devastating effects caused by the entrenched problems in scientific research.  Woolston’s report gives figures showing that 39% of all the different investigators responding would not recommend a research career [1]!  If the present downward course continues, the end result will be the death of science and research at universities (see:  “Could Science and Research Now be Dying?” ).

Concluding remarks! 

The 2016 survey of scientists by Nature indicates that today’s researcher is confronted by several difficult problems.  These result in conducting research becoming more problematic and scientists leaving the lab.  To rescue academic science from destruction, big changes must be made to the entire system for modern scientific research!

 

[1]  Woolston, C., 2016.  Salaries: Reality Check.  Nature  537:573-576.  Available on the internet at:  http://www.nature.com/nature/journal/v537/n7621/full/nj7621-573a.html .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE

 

WHISTLEBLOWER SUES DUKE UNIVERSITY FOR ACQUIRING RESEARCH GRANTS VIA FALSIFIED RESEARCH PUBLICATIONS! 

 

 

It's time to stop the need to cheat in academic research! (http://dr-monsrs.net)

It’s time to stop the need to cheat in academic research! (http://dr-monsrs.net)

 

Dishonesty in scientific research hurts everyone and seems to be increasing.  Cheating and corruption are especially notable for research activities at universities and medical schools (see “Why Would Any Scientist Ever Cheat?” ).  Most steps aiming to reduce research misconduct sadly are not very effective, due in part to the well-known tendency of universities to stonewall and deny any wrongdoing.

This article discusses how research fraud by a staff employee at the Duke University Medical Center now has expanded with a lawsuit filed by a whistleblower alleging that many millions of dollars of research grants from several federal agencies were acquired based on research results known to be falsified [1-4].  This new legal case is unusual and could force this prestigious university to return up to 3 times the awarded research support funds to the U.S. government [1-5].

Brief background about the U.S. False Claims Act [5] ! 

The False Claims Act (FCA) lets a U.S. citizen file suit on behalf of the federal government, to recover awarded funds that were fraudulently obtained.  Previous use of the FCA against research fraud has been very limited.  This new case at Duke not only will involve faculty and academic officials, but also invokes participation by the U.S. Department of Justice, officials at the National Institutes of Health and other federal agencies, several institutions having research collaborations with Duke, and very specialized lawyers.  A whistleblower winning an FCA lawsuit can obtain up to 30% of fraudulently acquired funds mandated to be returned to the government!

Nothing is simple in research misconduct, because others always are involved [1-4] !  

To its credit, Duke University formally investigated the research staff employee, Erin Potts-Kant, suspected of producing fraudulent research results, and found that over a dozen research publications involving her with coauthors, including the Principal Investigator, Prof. William M. Foster (Division of Pulmonary, Allergy, and Critical Care Medicine, at the Department of Medicine) were retracted or “corrected”; some published data was admitted to be unreliable.

The new FCA lawsuit recently has been filed (and unsealed) against this researcher, her supervisor, Duke University, and Duke University Health Systems by Joseph Thomas, formerly employed as a research coworker with Potts-Kant.  He earlier had expressed his concerns about research integrity to officials at Duke.  This FCA suit alleges that fraudulent published data was knowingly included in over 60 research grant applications, yielding awards totalling some $200,000,000.  Trial for this FCA case currently is pending.

What does this FCA case mean for dishonesty and corruption in academic science? 

I have previously described my view that dishonesty with scientific research in academia is largely an outcome of bad policies and activities by both (1) university science, which has been converted into a business where money is the goal (see“Money Now is Everything in Scientific Research at Universities” ), and (2) the current research grant system, where the destructive hyper-competition for research grant money now overrules all aspects of being an academic scientist and directly causes dishonesty (see  “All About Today’s Hyper-Competition for Research Grants” ).  Punishments for university faculty scientists getting caught with unethical research conduct have been notoriously weak or meaningless (see  “Dishonesty in Scientific Research: Are the Punishments for Being Caught Sufficient to Deter More Cheating?” ); now they will become much tougher due to the new involvement of the FCA for cases alleging research fraud.

The new legal situation using the FCA can result in a university actually having to pay big dollars for not having adequate control of dishonesty in its science activities.  The possibility that universities could face substantial financial penalties for research misconduct by any faculty cheaters and unethical employees now worries all private academic institutions; that’s good news!  Dealing with this grave problem of cheating in research publications and grant applications finally is given some teeth!

Whistleblowers are very significant! 

History shows that science cannot police itself.  The False Claims Act provides a strong pathway for whistleblowers to make their case known for research misconduct observed at universities and medical schools.  The new FCA case at Duke has the very positive effect of calling everyone’s attention to the important role of whistleblowers in reporting unethical science.  Dr. Peter Wilmshurst, a courageous clinical faculty researcher who has successfully blown the whistle on several cases of shameful misconduct by faculty scientists and medical industries (see  “Whistleblowers in Science are Necessary to Keep Research and Science-Based Industries Honest!” ), provides an inspiring model for having the guts to struggle with protecting honesty in clinical science.  If the new FCA trial verifies the alleged misconduct at Duke and forces that large university to refund research grant funds awarded on the basis of falsified publications, then the vital role of whistleblowers in keeping academic science honest will be made more widely recognized.

Concluding remarks! 

The increasing incidence of research misconduct in academic science is one of the gravest problems facing modern university scientists.  The pressures on science faculty from the hyper-competition for research grants are just enormous and causes some scientists to cheat.  Unless this hyper-competition and the conversion of university science into just another business entity both are stopped, then academic science will continue dying (see “Could  Science and Research Now be Dying?” , and“The Biggest Problems Killing University Science Still Prevail in 2016!” ). The extensive changes needed to accomplish that must involve the entire system for modern science!

 

[1]  McCook, A., 2016 (September 2).  Duke fraud case highlights financial risks for universities.  Science  353:977-978.  Available on the internet at:  http://science.sciencemag.org/content/353/6303/977.full ).

[2]  Staff Reports, 2016 (September 2).  Former researcher sues Duke, alleges Uni used improper data to receive funding.  The Duke Chronicle.  Available on the internet at:  http://www.dukechronicle.com/article/2016/09/former-researcher-sues-duke-alleges-uni-used-improper-data-to-receive-funding .

[3]  Patel, V., 2016 (September 7).  Experts address research fabrication lawsuit against Duke, note litigation could be lengthy.  The Duke Chronicle.  Available on the internet at:  http://www.dukechronicle.com/article/2016/09/experts-address-research-fabrication-lawsuit-against-duke-note-litigation-could-be-protracted .

[4]  Aquino, J.T., 2016 (September 9).  Whistleblower suit claiming Duke faked data is warning signal.  Bloomberg BNA.  Available on the internet at:  http://www.bna.com/whistleblower-suit-claiming-n73014447442/ .

[5]  McCook, A., 2015 (March 18).  So you want to be a whistleblower?  A lawyer explains  the process.  Retraction Watch.  Available on the internet at:  http://retractionwatch.com/2015/03/18/so-you-want-to-be-a-whistleblower-a-lawyer-explains-the-process/ .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE

THE BIGGEST PROBLEMS KILLING UNIVERSITY SCIENCE STILL PREVAIL IN 2016!

 

How can scientific research at universities be saved from decay and death? (http://dr-monsrs.net)
How can scientific research at universities be saved from more decay and death?      (http://dr-monsrs.net)

 

Most people are not at all concerned with science, so they presume that everything is just fine for scientific research at universities.  This is utterly wrong!  Just because science journals continue to publish myriad new articles by faculty scientists, and the government agencies spend billions of taxpayer dollars each year to support research studies, does not mean that all is well!  In fact, many faculty scientists are very dissatisfied with their job (see: “Why are University Scientists Increasingly Upset with Their Job? Part I” )!

In this essay I briefly summarize the present status of the biggest problems causing me to conclude that university science is being so distorted and so diverted from its true aims that it is headed for collapse (see:  “Could Scientific Research Now Be Dying?” ).    My purpose in today’s article  is to encourage awareness of this critical situation, stimulate forthright discussions and debate, and, emphasize that much more attention to this problem is badly needed.

A brief background! 

There are 2 main causes for the decay and degeneration of scientific research at modern universities: (1) the academic institutions, and (2) the research grant system.  Both of these are happy with the resulting consequences of their bad policies and actions.

Why do these bodies operate like that?  All the many expenses of doing research must be paid by someone.  For academic institutions, research grants are the usual source for funding their scientific studies.  In recent times, that reality has expanded into the rule that getting and renewing research grants is the main job for members of the science faculty.  Research grants provide a very welcome solution to the financial woes plaguing modern universities.  The overwhelming importance of research grants has transformed universities into businesses where money is everything.  Research accomplishments are only the means to increase financial profits at these businesses (i.e., getting more money is the true goal, and research is not directly valued).

The current research grant system is very happy to be awarding billions of dollars every year to support scientific research.  By sponsoring all these research studies, the large federal agencies issuing research grants achieve: (1) approval from the both the public and scientists for supporting research, and, (2) acquisition of ever increasing power to control, influence, and regulate which investigations can be done and by whom.  On the surface, everything with university science and the research grant system seems quite fine, but if one peers more deeply then hidden problems become apparent (see:  “Science has been Murdered in the United States, as Proclaimed by Kevin Ryan and Paul Craig Roberts!” ).

How does the university money system work to cause such bad effects? 

A previous dispatch examined details about how research grants are used in modern universities (see: “Three Money Cycles Support Scientific Research” ).  Study that article and you will then comprehend how the causes and their effects lead to the degradation of university science.

Getting a research grant renewed involves winning a competition between all faculty scientists.  Many applications from science faculty are not successful!  The resulting struggle to win funding is so deep and so time-consuming that I term it a hyper-competition (see: “All About Today’s Hyper-Competition for Research Grants” ).  I believe that the vicious effects of this hyper-competition bothers faculty researchers more than anything else in their job environment.

What happens to individual faculty scientists who are ‘temporarily between grants’ (i.e.,not funded!)?  Lab space assignment soon is cancelled and graduate students must leave.  Teaching assignments often are increased.  All work time must be spent on trying either to get funded again, or to find a new employment in a science-related job.  Professional reputation diminishes.  Job satisfaction decreases, as anger, disappointment, and frustration all increase.

Many science faculty now must spend much more time working on research grant applications than they do with work in their lab!  Obtaining a new grant or a renewal award means that a faculty scientist then can pay rent for their lab space, pay salaries for their graduate students and postdocs, buy needed research supplies, and, hope to get promoted and tenured.  But, as long as the hyper-competition continues, it: (1) elicits dismay at the status of science, (2) encourages corruption and dishonesty, (3) generates  immense pressure to worry about the future, and, (4) precludes trust and collegiality with faculty research collaborators, since everyone must compete with everyone else.  This hyper-competition is getting worse in 2016.

Why is nothing done to resolve this big problem? 

Both universities and the federal research grant system think the current status is just wonderful!  Thus, neither wants to make any changes!  Most faculty scientistsworking  on research at universities, medical schools, and research institutes are quite aware of these problems, but almost all remain quiet since they are afraid to hurt their chances to obtain renewal of their research grant(s).  Although their lack of action is readily rationalized, they have been transformed from researchers into employees in a business; actually, they are slaves to the research grant system.  High-level administrators employed at the research grant agencies also are aware of the problems described above, but cannot speak out without getting a reputation as being troublesome or even disloyal; similarly, high administrators at education centers are kept silent by the recognition that profits from research grant awards are paying their own salary.

Who and what are left?  Science societies represent very numerous scientists who feel the bad effects of this problematic situation, but they prefer to remain silent and uninvolved.  Hence, in 2016 we are left only with the public!  The general public in the U.S. unfortunately is estranged from science and research;  for most adults, scientific research is only an entertaining amusement!  It does not matter to them that basic science is diminishing and research quality is being subverted.  Thus, the public is very unlikely to become active about the current dreadful problems in university science.

Is there no hope at all for the future? 

Wrong!  One very wonderful change has occurred recently!  Several billionaire philanthropists (see:  “James E. Stowers” , “Paul G. Allen” , and “Yuri Milner” ) recently and separately established dedicated research institutes and unusual support programs that remodel how researchers work and are funded. By removing most causes of the problems with university science,  academic scientists are liberated.  For setting up a new model for conducting and funding scientific research, see my recent reports on “Stowers-2” ,“Allen-2 “, and “Milner-2” .  Changes made by these visionaries are revolutionary and dramatically oppose the present misguided practices at universities and the federal research grant system.

These changes should  enable more strong research breakthroughs by freeing some research scientists from the shackles imposed on most of their counterparts in universities.  With that new freedom, these fortunate researchers will prove that the badly needed changes work in practice; this new model illustrates what is right or wrong with current university science.

Concluding remarks! 

In 2016, there now is some hope that scientific research at universities could be rescued from total decay and death!  Saving university science won’t be easy, but certainly will be worth the effort!

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE

 

IMPORTANT ARTICLE BY JUDY STONE IN 2015 Forbes: ALL OF US ARE BADLY AFFECTED BY RESEARCH MISCONDUCT! 

 

Research misconduct affects all of us! (http://dr-monsrs.net)

Research misconduct affects all of us badly!  (http://dr-monsrs.net)

 

An outstanding report by Judy Stone, “Why The U. of Minnesota Research Scandal Threatens Us All”, appeared in Forbes one year ago (May 27, 2015) [1].  She details the misconduct of research and the scandalous cover-ups which still are going on in 2016 at the University of Minnesota School of Medicine [2].  Last week, I briefly covered general aspects of this shocking situation in Minnesota (see: “Dishonesty in Scientific Research: Are the Punishments for Being Caught Sufficient to Deter More Cheating?” ).  Now, we will take a closer look at Judy Stone’s masterful discussion about exactly how cheating in scientific research produces bad direct consequences for everyone.

Who is Judy Stone?  She is a medical doctor specializing in infectious diseases, and also has personal experience in research; she has authored several books, including one giving guidance for clinical research studies.  Her interests focus on tropical diseases, advocating about ethical issues in medicine, and writing for the general public.  Her vivid dispatches currently appear as contributions to Forbes.  For her brief autobiography in 2012, see: http://blogs.scientificamerican.com/molecules-to-medicine/welcome-to-molecules-to-medicine/ .

Trust in science, research, and scientists! 

The great majority of scientists are honest!  Unethical conduct by research scientists involves a small number of individuals, but this figure seems to be on the increase (see: “Introduction to Cheating and Corruption in Science” ).  Dishonesty in science breaks theenormous trust in research and scientists, and, has negative effects on many unsuspecting people.

The general public continues to have very high trust in the research findings and published conclusions of professional scientists.  That is good, except that they are deceived and unaware that some dishonest individuals have broken their trust.

All levels of science teachers and other educators have a high trust in whatever is published in science textbooks and references.  The entire existence of fraudulent professionals is not accepted by most teachers because that realization undermines all education.

All types of research scientists have very limitless trust in the published findings of other scientists.  When planning a new experiment, scientists typically assume previously published results are really true; they do this of necessity, since it is impractical to have to verify all earlier results from other labs by repeating those investigations.

People who are clinical patients of good doctors assume that their caregivers are fully cognizant of all new results about their treatments, and act only for their well-being.  Most patients are not sufficiently aware that pharmaceutical companies are first and foremost businesses dedicated to pursuing profits.  A whole spectrum of dishonesty in clinical and preclinical research studies is stimulated by “powerful financial incentives to do unethical things” [3]; that means  researchers can “pressure vulnerable subjects to enroll in studies, fudge diagnoses to recruit otherwise ineligible subjects and keep subjects in studies even when they are doing poorly” [3].

Effects of dishonesty in research! 

When ‘false facts’ are taught in classes to children or adults, what is learned or naively accepted as being true is actually wrong.  If that falsity is used for some practical purpose, something will not work as expected.  People working in many different jobs encounter this general problem.

Scientists believing some deceitful research report find that their own lab work gives negative or unexpected results.  Upon redoing the reported experiments, they unexpectedly see that the published results cannot be repeated.  This means that time and effort are wasted by scientists, lab workers, and administrators.

Think how much extra time and effort must be spent checking and rechecking everything for such huge and important activities as research probes sent into outer space, new prescription drugs finally approved for sale to patients with widespread diseases (e.g., arthritis, cancer, diabetes, mental health), design and construction of battery-powered self-driving automobiles, etc.  Much of this time and money must  be used to try to make certain that everything works as planned and nothing is based on false assumptions.

Any of us can be badly affected by inadequate testing of safety for new drugs! 

Pharmaceutical drug trials certainly are very prominent for problems with ethics, corruption, and truth vs. falsity.  Judy Stone explains vividly how clinical drug trials are misleading and deceitful if they are conducted fraudulently or actually are marketing studies; they need to be done “honestly and ethically” [1], so patients and their physicians can realistically have confidence in the intended effects.  This admonition is not only directed to research scientists, but also extends to drug companies, to review bodies, and to government regulatory agencies (i.e., U.S. Food and Drug Administration).

The spectrum for research misconduct during development of new medical drugs is indeed very large.   Any or many of us can be affected negatively by any dishonesty in the testing and evaluation process.  When some professional researcher observes unethical behavior by other researchers they are obliged to report that and investigate what is going on [4]; in some cases, it is even necessary to become a whistleblower in order to prevent future patients from being harmed or killed (see: “Whistleblowers in Science are Necessary to Keep Research and Science-based Industries Honest!” ).

Concluding remarks! 

Any falsification of research or corruption of clinical investigations testing new medical drugs affects a very large number of people!  Unfortunately, recent history teaches us that we must always be suspicious about clinical trials since there are so many known instances of blatant deceit [1,3-4].  As Judy Stone says, “It is well known that industry-funded trials get more positive outcomes than those that are neutrally sponsored” [1]; why is that so?  Any innocent patient (e.g., you!) can have bad outcomes due to this problem with ethics in some scientists and some companies.  Lying, cheating, and fraud have no place in research!

 

[1]  Stone, J., 2015.  Why the Minnesota research scandal threatens us all.  Forbes.  Available on the internet at:  http://www.forbes.com/sites/judystone/2015/05/27/why-the-umn-research-scandal-hreatens-us-all/#4c1697e9751b .

[2]  Stone, J., 2016.  Denial.  Why UMN needs a mental health ombudsman.  Forbes.  Available on the internet at:  http://www.forbes.com/sites/judystone/2016/05/14/denial-why-umn-needs-a-mental-health-ombudsman/#81c3d4748d3d .

[3]  Elliott, C., 2015.  The University of Minnesota’s medical research mess.  New York Times, The Opinion Pages, May 26, 2015.  Page A19.  Available on the internet at: http://www.nytimes.com/2015/05/26/opinion/the-university-of-minnesotas-medical-research-mess.html?_r=0 .

[4]  Wilmshurst, P., 2004.  Obstacles to honesty in medical research.  HealthWatch – UK, Newsletter #52, 2003 HealthWatch – UK Award Lecture.  Available on the internet at:  http://healthwatch-uk.org/20-awards/award-lectures/65-2003-dr-peter-wilmshurst.html .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE

 

DISHONESTY IN SCIENTIFIC RESEARCH: ARE THE PUNISHMENTS FOR BEING CAUGHT SUFFICIENT TO DETER MORE CHEATING?

 

Cheating at research continues to be a big problem for science! (http://dr-monsrs.net)
Cheating at research continues to be a big problem for science today!     (http://dr-monsrs.net)

Fraudulent research is widely abhorred, but still continues to occur and seems to be increasing.  That must mean either the prevailing standards of professional ethics are degenerating, or the rewards for research misconduct outweigh the penalties for being caught.  Dishonesty is a general and long-standing problem for science, and several causes are known (see: “Why Would Any Scientist Ever Cheat?” ).

A recent case of research misconduct in Japan has received extensive media coverage (see:“A final judgment is given to Haruko Obokata: Misconduct of research!” ).  Here, we take a look at what punishments are being given out in recent scandals with research fraud.  Issues discussed here include whether usual punishments actually will discourage cheating by others, and whether institutions conducting contracted research studies (e.g., universities, medical schools, research institutes) can be trusted to police themselves?

Several earlier articles dealt with dishonesty in science (see: “Introduction to Cheating  and Corruption in Science” , and,  “Why is it so Very Hard to Eliminate Fraud and Corruption in Scientists?” ).  Beginners will find it useful to first read those essays before studying this new dispatch.

Case #1:  Multiple ethical problems and persisting cover-ups at the University of Minnesota Medical School (2008-2016) [1,2]. 

Several different instances of ethical misconduct during studies evaluating new clinical drugs at the University of Minnesota Medical School have shown improper recruitment of subjects and disregard for patient care (i.e., one subject committed suicide!).  Internal and external investigations resulted in disqualifications, felony charges, and accusations of cover-ups.  Dr. Carl Elliott, a professor in the Center for Bioethics at this same institution,  recently authored an insightful article about this unfortunate situation [1].  He states, “Rather than dealing forthrightly with these ethical breaches, university officials have seemed more interested in covering up wrongdoing” [1].  He also notes that official bodies intended to oversee the welfare of patients enrolled in clinical drug trials (i.e., Institutional Review Boards) are given inadequate authority and staffing to deal effectively with clinical research misconduct and cover-ups.

The range of punishments issued by the University of Minnesota in response to criticisms from the Federal Drug Administration and several external review bodies include disqualifications from further research and suspension of some medical licenses.  The obvious cover-up still is ongoing and now is being publicly criticized; no punishments to misguided administrators seem to have been given.

Case #2:  Research misconduct scandal at the Duke University School of Medicine (2007-2010) [3,4]. 

Misconduct by a cancer researcher, Dr. Anil Potti, involved several clinical trials using new genomic tools to determine the best treatment for cancer patients.  His results were produced with many collaborators, and were published with coauthors in very high quality journals.  Allegations of research misconduct arose in part from a medical student, Brad Perez, researching with Dr. Potti; this whistle-blower courageously announced his misgivings to supervisors and university officials.  More questions arose about Dr. Potti’s research results, but an official review found no research misconduct.  Later, that view at Duke slowly changed, forcing its standards for research integrity and mechanisms to investigate allegations of misconduct to be strengthened and improved.

The range of punishments delivered in this case is extensive.  Dr. Potti made financial settlements to settle multiple lawsuits for medical malpractice; in addition, his numerous published research reports were retracted.  In 2010, Dr. Potti resigned his position at Duke.  Subsequently, he obtained new medical licenses in South Carolina and Missouri; the Medical Boards for both states later issued reprimands to him.  There now are many articles and widespread publicity in the popular press, professional medical journals, and the internet about Dr. Potti’s misconduct ; his reputation now is totally destroyed.  It is not clear if any of his collaborators or administrators at Duke were punished.

Case #3: Falsified Research Results and Unprofessional Conduct at the Karolinska Institute (2010-2016) [5-7].  

Current investigations of research experiments by a surgeon, Dr. Paolo Macciarini, are active for allegations of misconduct at the Karolinska Institute, the most prominent medical research center in Sweden.  His clinical research involved implantation of an artificial trachea seeded with the patient’s own stem cells.  Six of 8 patients receiving this experimental treatment have died.  A Swedish TV documentary critical of this surgeon stimulated official investigations.  After more allegations of medical research misconduct, an external assessor concluded that Dr. Macchiarini had falsified his test results; in response, Karolinska Institute announced its support of their star surgeon.

A range of punishments was issued to Dr. Macchiarini.  The Karolinska Institute recently announced that it will sever all ties to Dr. Macchiarini when his contract expires later in 2016. This dramatic controversy resulted in resignations of the Vice-Chancellor at Karolinska, and, the Secretary-General of the Nobel Assembly.  In 2016, the Swedish government initiated a new review into how allegations of misconduct are handled; it seems quite clear that the present handling is inadequate.

General discussion about these cases! 

These different cases of alleged and proven misconduct by professional researchers all show that it is easy to do fraudulent science and get it published.  Only if one is caught cheating and full documentation is acquired does the possibility of criminal punishments arise.  Media attention and input from someone who has the guts to be a whistle-blower speeds up the process of proving research misconduct.

Institutions must always be fair to the accused while the alleged dishonesty is being investigated.  The process for investigations often is unwieldy and easily compromised.  Institutions typically focus attention only on one “bad individual”, who is declared an exception to their high standards for ethical conduct.

What level of punishment is appropriate to discourage others from being dishonest? 

Punishments for research misconduct are not uniform between institutions, and often seem to be rather ineffective.  If a professional research scientist is proven to have falsified research data, is it enough to only have their publications retracted?  Or, must there also be financial penalties?  Is it sufficient to force cheaters to be on leave for 2 years, or should they be dismissed?  Should other institutions be prevented from subsequently employing them?  Should coworkers who participated in the fraud also be punished, and how strongly?  What punishments should be given to administrators for their cover-ups and stonewalling?  These necessary questions are not simple, and have no easy answers.

My own conclusions about these 3 cases! 

I draw several conclusions from the 3 cases just described.  (1) It takes many years for investigations of alleged misconduct to be completed.  (2) The long slow process of dealing with unethical research is made quicker by whistle-blowers and media attention.  (3) Institutions have a strong tendency to deny wrongdoing and minimize allegations of misconduct.  (4) Cover-ups mean that institutions cannot be trusted to police themselves.  (5) Punishments given to faculty for research misconduct vary widely, and, co-researchers and administrators often receive none.  (6) Punishments appear to only minimally deter new offenses by others.

Research dishonesty in laboratories and hospitals is very bad for patients, society, and science.  Unethical practices by researchers hurt trust by other scientists and physicians, and by the public.  Much more attention is needed to solve and deter this very general problem for science.

 

[1]  Elliott, C., 2015.  The University of Minnesota’s medical research mess.  New York Times, The Opinion Pages, May 26, 2015.  Page A19.  Available on the internet at: http://www.nytimes.com/2015/05/26/opinion/the-university-of-minnesotas-medical-research-mess.html?_r=0 .

[2]  Stone, J., 2015.  Why the Minnesota research scandal threatens us all.  Forbes, May 27, 2015.  Available on the internet at:http://www.forbes.com/sites/judystone/2015/05/27/why-the-umn-research-scandal-hreatens-us-all/#4c1697e9751b .

[3]  Price, J., 2015.  Trial in medical research  scandal at Duke postponed.  The News & Observer, Health Care.  Available on the internet at: http://www.newsobserver.com/news/business/health-care/article10233812.html .

[4]  Hinks-Jones, L., 2015.  Patients, researchers demand further prosecution in Duke case. Bloomberg BNA.  Available on the internet at: http://www.bna.com/patients-researchers-demand-n57982065145/ .

[5]  Enserink, M., 2016.  Swedish academy seeks to stem ‘crisis of confidence’ in wake of Macchiarini scandal.  Science, February 12, 2016  351.  Available on the internet at:http://www.sciencemag.org/news/2016/02/swedish-academy-seeks-stem-crisis-confidence-wake-macchiarini-scandal .

[6]  McCook, A., 2016.  Sweden rocked by scientific scandals, re-thinking how it investigates misconduct.  Retraction Watch, February 25 2016. Available on the internet at:  Retraction Watch, February 25, 2016. http://retractionwatch.com/?s=Sweden+rocked+by+scientific+scandals .

[7]  Oltermann, P., 2016.  ‘Superstar doctor’ fired  from Swedish institute over research ‘lies’.  The Guardian, March 24, 2016.  Available on the internet at: https://www.theguardian.com/science/2016/mar/23/superstar-doctor-fired-from-swedish-institute-over-research-lies-allegations-windpipe-surgery .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE

 

WHY MUST NEW IDEAS BE DISCARDED BY FUNDED SCIENTISTS?

 

Why are new research ideas so repressed? (http://dr-monsrs.net)

Why are good new research ideas so often repressed?   (http://dr-monsrs.net)

 

For scientists researching and teaching at a university, medical school, or research institute, part of their traditional mission is to dream up new ideas.  Good ideas help with many activities, including designing new experiments, modifying research instruments and methods, composing research reports for publication in science journals, developing new concepts, deciding how to present complex topics in course lectures, etc.

Despite the curiosity-driven output of new ideas originated by professional scientists, almost all are discarded by faculty researchers at modern universities.   This dispatch discusses the difficult conditions leading to a decision about what will be done when a really stimulating new research idea magically arises.

How do scientists deal with their new research ideas? 

New ideas can pop up all the time!  Some are good, some are awful, and some are funny!  All scientists have curiosity, but some researchers come up with so many new ideas that they are  known as “idea people”.  The first task to deal with new ideas is essential: write down everything so it can be recalled later.  Unless promptly recorded, new ideas are rapidly forgotten and disappear forever.

The second task is to evaluate if the new idea has sufficient merit to be put into practice.  Since grant-supported faculty scientists have already decided to work mainly or only on their funded research project, this evaluation looks at whether the new idea has enough relevance to be added to the research activities underway for the current research grant.  If it does not, then it must either be discarded or dumped onto an ever-growing pile of ideas that are stored for some future time that never seems to come; fortunately a few of the many new ideas recorded in a log book can be used later when constructing an application for renewal of the present research grant.  If it does have good relevance, the scientist advances to ultimate questions of exactly how, when, and where can the idea be inserted and used in the ongoing laboratory efforts; most new ideas never reach this stage.

What usually happens to good new ideas? 

The previous paragraph gives some idea of the usual lack of freedom for faculty scientists to undertake any new research work not directly connected to their funded project.  This restriction is very strong due to the immense pressures from 2 related issues that all inventive faculty scientists must face.  First, there is the time problem (see: “Why is the Daily Life of Modern University Scientists so Very Hectic?” ); most academic scientists now have almost zero free time since they are so busy running experiments for their grant-supported project, writing applications to acquire more research grants, teaching in courses, publishing research reports, starting a family, etc.  In theory, if a new idea is really super-promising for research, the funded scientist could try to acquire an additional (second) research grant for a new project using that idea.  This maneuver is not so easy due to the second problem, the  hyper-competition to acquire research grants (see: “All About Today’s Hyper-Competition for Research Grants” ).  Yes, good new ideas are sought by the federal granting agencies, but the intense hyper-competition means that most will never get funded.  Thus, almost all good new ideas for research are basically dead-on-arrival and are discarded! 

Another possibility for initiating research using a new idea is to use a small portion of the current financial support to conduct some pilot studies.  That work costs the scientist both money and time, and it can be done only when there actually is some extra money and extra time available; both conditions often are very questionable.  If the pilot data are very promising, then attention is given to composing a strong application for an additional research grant; that takes many months, meaning that this promising new project with a second grant could be started only at least one year later.  More realistically, an application for a small exploratory research grant can be submitted to dedicated funding sources (e.g., American Cancer Society); the preliminary data obtained then are used to compose a strong application for a new standard research grant.

New ideas are not repressed by innovative models for funding research studies! 

To be able to more freely explore and use new ideas for research, a Principal Investigator must have some free time, supplemental funds, and a working atmosphere that encourages trying new research approaches and new studies.  Those are strong features of the very innovative research support programs and special institutes recently established by James E. Stowers (see: “A Jackpot for Scientific Research is Created by James E, and Virginia Stowers!  Part II: The Stowers Institute is a Terrific New Model for Funding Scientific Research!” ) and Paul G. Allen (see: “Getting Rid of Research Grants: How Paul G. Allen is Doing It!” ).  The unusual features of these support programs will result in research breakthroughs that were not otherwise possible when the same investigators were previously working with regular research grant support.

General discussion about new ideas in science! 

The main message here is that faculty scientists do come up with many good ideas, but these are not easily put into practice unless they are closely related to their present research grant.  If a determined scientist would somehow move their current grant into supporting a new project, that decision almost guarantees non-renewal.  With the multiple restrictions now prevailing, only a very few new research ideas ever will be pursued; thus, the practical conditions generated by the research grant system and modern universities repress the creation of research ideas that are new, creative, and significant.  It seems totally pointless to faculty scientists to try to work on anything not directly related to their funded project!

Grant-supported faculty scientists today have little choice in dealing with new ideas because they are slaves to their research grant!  The system discourages creativity and questioning, so new ideas are simply discarded!  When all the restrictions are realistically considered, the best possibility for activating a new research idea is to make such into part of an application for renewal of a funded grant.

Concluding remarks! 

Yes, research freedom is very important for science!  Having new ideas for research is essential to all scientists, but putting the good ideas into practice is not very easy due to restrictions imposed by the research grant system, the time problem, and the commercialism now rampant at modern universities (see: “What is the Very Biggest Problem for Science Today?”).  Fortunately for the progress of science, some new research ideas do manage to be activated despite all the restrictive difficulties!

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE

 

GETTING RID OF RESEARCH GRANTS: HOW PAUL G. ALLEN IS DOING IT!

 

Quotations about scientific research from PAUL G. ALLEN! (http://dr-monsrs.net)
Quotations about scientific research from PAUL G. ALLEN, who knows what needs to be changed! (http://dr-monsrs.net)

 

The co-founder of Microsoft (1975), Paul G. Allen, has just made a large donation to start a dramatic new research program in biomedical science, the Paul G. Allen Frontiers Group.  My recent dispatch about this dynamic man briefly summarized his life interests, global activities, and accomplishments with supporting science and research (see: “A Dramatic Individualist, Paul G. Allen, is a Major Benefactor of Scientific Research!”).  The present article presents how Allen’s newest philanthropy for science is organized, explains what he is aiming for, and applauds his insight into what is wrong in science at modern universities.

The Paul G. Allen Frontiers Group [1-3]! 

The new Paul G. Allen Frontiers Group has 2 mechanisms for sponsoring research.  The Allen Discovery Centers provide $30 million to support productive research groups where ground-breaking investigations going into the future of science are underway.  The first 2 awards will go to Tufts University (Boston) for fundamental investigations on the genesis of organ and tissue structures, and to Stanford University (Palo Alto) for systems-level computational modeling of immune cell interactions with bacteria.  This portion of the Frontiers Group will fund up to 10 Discovery Centers.

The new Allen Distinguished Investigators are professional scientists working at various institutions around the world, and  can be either junior or senior researchers showing the potential to dramatically reinvent entire areas of science.  The awards of 1-1.5 million dollars for up to 25 selected scientists enable each to initiate unrestricted new directions for research in their respective fields.  The Distinguished Investigators receive 10 years of support, thereby encouraging studies of very large previously unapproachable research questions.  The freedom provided allows the Distinguished Investigators to study unusual subjects and use unconventional approaches.  These possibilities are particularly needed for breakthrough studies into the complexities of biomedical science.  Initial selection of 4 research scientists has just been announced; for details about their investigations, see “Video: Launch press conference: The Paul G. Allen Frontiers Group” .

What will be the influence of the Allen Frontiers Group on science [1-3]? 

The Allen Frontiers Group is revolutionary because it has several very distinctive features.  (1) The new awardees all are located outside the several large research institutes founded by Paul Allen in Seattle; thus, the influence of his philosophy for high quality science now will spread more widely.  (2) Awards in the Allen Frontiers Group all supersede the traditional approaches used to support science with research grants; the awardees can jump over the usual step-by-step progress made by individual scientists via using new and unconventional ideas for research that are too risky to be funded by research grants.  (3) The large amount of time university faculty scientists now need to waste dealing with research grants (see “What is the New Main Job of Faculty Scientists Today?” ) will become available for actual experimental work in their laboratory; federal grants will not be needed by the Distinguished Investigators.  (4) The awardees have a very unusual amount of unrestricted freedom for creativity and innovation; this encourages making advances in knowledge for topics and questions that are complex, difficult, and important.

The changed atmosphere provided by these factors should act to return university scientists toward finding important new knowledge through basic research, instead of chasing money from research grants.  Thus, research by investigators in the Allen Frontiers Group will have a large impact by greatly advancing their fields in bioscience.  Paul Allen is liberating faculty scientists to do better science, to investigate very difficult research questions, and, to once again have fun with their work (see: “Why are University Scientists Increasingly Upset with Their Job?  Part II” )!

Paul Allen must perceive exactly what is wrong with today’s university research! 

The classical belief that research scientists should be creative, inventive, fearless, and unhindered is increasingly not evident in modern universities.  The current research grant system is destructive and hinders bringing new ideas into basic research.  Freedom is missing to take chances on making research breakthroughs by using unconventional experiments.   Novel ideas must be repressed due to worries about not getting a grant renewed.  These widespread restrictions unfortunately limit research progress for all faculty scientists at universities, medical schools, and research institutes.  The improved working atmosphere in Allen’s design for research includes the freedom to think new thoughts and go against the flow, collaborate with teamwork instead of unbridled competition, and, develop unforeseen new concepts .

Other philanthropists also act to free faculty scientists from bad problems with the research grant system! 

I recently highlighted another remarkable philanthropic effort to rescue science from its present malaise by James E. Stowers, who established and generously endowed the Stowers Institute for Medical Research (see: “A Jackpot for Scientific Research, Part II” ).  His large new research institute has some similar features to the Allen Institutes, including that most financial  support is provided internally.  At least 2 different billionaires thus perceive the important advantages for science of using philanthropy to substitute for the perverse research grant system (see:  “Research Grants Cause Both Joy and Despair for University Scientists!” ).   In fact, several other megaphilanthropists recently have initiated support programs which strikingly advance university science [e.g., 1].

Concluding remarks! 

Paul Allen clearly recognizes the negative effects the current research grant system has upon scientific research in universities.  A key feature for investigators in the new Allen Frontiers Group is their liberation from the restrictions and distortions imposed by grant-supported research; they now have the freedom to make important research advances using creativity, innovation, and initiative while daring to take chances!

After reading my previous reports about the Stowers Medical Research Institute, many concluded that sponsorship of high quality scientific research by private philanthropy is NOT realistic because nobody else would donate the large sums of money needed.  Several other big donors show that they all are very wrong!  

It is easy to predict that the outcome of the new Frontiers Group generously sponsored by Paul G. Allen will be nothing short of wonderful!  He should be praised by all research scientists for recharging and improving scientific research at universities!  He truly is a hero in sience!  Hooray for Paul Allen!

 

[1]  Allen Institute, 2016.  “Press Release: Paul G. Allen Announces $100 million to Launch The Paul G. Allen Frontiers Group” .  Available on the internet at:  https://www.alleninstitute.org/what-we-do/frontiers-group/news-press/press-resources/press-releases/paul-g-allen-announces-100-million-launch-paul-g-allen-frontiers-group .

[2]  Cha, A. E., 2016.  Philanthropist Paul Allen announces $100 million gift to expand ‘frontiers of bioscience’.  The Washington Post, March 24, Section A, page A2.  Available on the internet at:  http://pqasb.pqarchiver.com/washingtonpost/doc/1775298386.html?FMT=FT&FMTS=ABS:FT&date=Mar+24%2C+2016&author=Ariana+Eunjung+Cha&desc=%24100+million+to+fund+exploration+of+biosciences&free=1&pf=1 .

[3]  The Paul G. Allen Frontiers Group, 2016.  “Video: Introducing The Paul G. Allen Frontiers Group” is available on the internet at:   https://www.youtube.com/watch?v=1bkLKuJigpY .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE 

 

WHY IS IT SO DIFFICULT FOR EVERYONE TO UNDERSTAND SCIENCE? 

 

It is not so difficult for some people to understand science! (http://dr-monsrs.net)

It is not so difficult for some to understand science! (http://dr-monsrs.net)

 

Many people of all ages find it really hard to comprehend science and research!  Others even are afraid of science!  In this essay I will first present the causes and unfortunate consequences of this problem; then I will offer some ideas for countering its bad effects.

What causes the problem many adults have with reading and learning about science? 

This very widespread difficulty chiefly involves at least 4 different causes.

(1) POOR EDUCATION!  Most early instruction about science in schools only involves learning to regurgitate standard answers to standard questions.  Science courses in primary and secondary schools are largely superficial, descriptive, and mainly involve memorization.  Memory takes the place of learning and understanding, so interrelationships and reasoning are never presented.  Hence, schoolchildren don’t learn about research as the basis for knowledge, and mostly forget about science as soon as classes are over.

(2) THE STRANGE LANGUAGE OF SCIENCE!  Most people are separated from research and scientists by the vocabulary of science.  All 3 main branches of science (biology, chemistry, and physics) and each of their subdisciplines use specialized terms.  Scientists do speak strange languages!

(3) SCIENCE AND RESEARCH ARE ENTERTAINMENTS!  “Science news” is presented by most TV media as “gee-whiz entertainment”.  Research is seen as being amusing, and scientists are considered by Hollywood to be weird and funny creatures.

(4) SCIENCE IS MUCH TOO DIFFICULT FOR ME TO EVER UNDERSTAND!  Understanding science topics is viewed by many people as being beyond their capabilities.  Science has nothing to do with their personal lives, so why waste any time trying to understand it!

Effects of these problems with understanding science! 

Each of the foregoing causes directly creates some bad consequences.

(1) POOR EDUCATION!  Students soon conclude that science has no role in their personal life.  Definitions of key science terms are de-emphasized in school classes, and concepts often remain fuzzy; this readily leads to mistaken beliefs and wrong assumptions.

(2) THE STRANGE LANGUAGE OF SCIENCE!  Only a handful of special terms needs to be learned for understanding any aspect of science, but this task often makes adults give up even trying to read an article about modern science.  This effort is essential, just as one cannot read a story written in a foreign language until some vocabulary first is acquired!

(3) SCIENCE AND RESEARCH ARE ENTERTAINMENTS!  This is a very common belief, but nothing could be further from the truth!  The fundamental reason why scientific research is so important is usually not explained.  Today’s media are badly misleading people!

(4) SCIENCE IS MUCH TOO DIFFICULT FOR ME TO EVER UNDERSTAND!  This false belief probably is part of the “dumbing down” of the US public, and serves to intimidate many adults.  Even simplified materials on the internet will give a general understanding about science; dealing with math equations and learning lots of new terms are not necessary!

All these consequences reinforce each other!  The end result is that science, research, and scientists are totally estranged from people (see:  “On the Public Disregard for Science and Research” ), and are viewed as being utterly unimportant by most individuals (see:  “What Does Science Matter to Me, an Ordinary Person?” ).

Is there any good analogy to this very general problem for science? 

The answer to this question is, “yes”!  All the difficulties described above also are found with learning a foreign language!  Modern methods and tools for learning languages now are widely available, using recordings, educational media, computer programs for independent study, visits by native speakers, immersion experiences, etc.  Some of these will be beneficial for adults trying to read and learn about science.  Vocabulary is the first basis for learning any language, including the strange terms in science.  Without learning some new words, the languages of science cannot be understood.

If children would be better educated about science, then adults will not see it as being incomprehensible.  I have addressed defects in current science education for children earlier (see:  “What is Wrong with Science Education for Children?” ).  For science classes in primary and secondary schools, a short (30 minutes) illustrated guest presentation by a real live scientist (i.e., a “foreign speaker”) will add much interest and give a more realistic picture of science and research than can any textbook.

Other ideas for dealing with this common problem! 

I offer 3 additional recommendations to individuals trying to deal with their problem of being afraid of science and technology.  (1) Read first about small aspects and topics.  It isnot necessary to master some textbook for you to be able to understand brief media reports about science!   (2) When starting to read a newspaper article, look up a few definitions and diagrams on the internet; that is very easy and will aid your efforts to understand!  (3) Focus your efforts on current events in science, so you can jump beyond all the famous dead scientists and dry facts given in your earlier school textbooks and classes.  (4) Seek information about some topic in science and research that concerns you personally (e.g., your health, your wealth, your community (e.g., purity of water supply), your forthcoming vacation (e.g., ecology, plants and animals, local food, etc.), your shoes (e.g., nature of the improved materials used), your nutrition (e.g., good or bad, quantity, hidden chemical poisons), your automobile (e.g., electric cars, driverless vehicles, production of gasoline from oil), etc.

Concluding remarks! 

I believe the general problem that it is difficult to teach adults who find science too difficult can be made easier by copying some of the educational practices used to teach foreign languages.  Interactive teaching of both children and adults about how science is related to everyday life will help make the learning much easier.  Individuals must be encouraged to be courageous and overcome their fear of science; after success, most will agree that understanding science is not impossible, and even can be fun!

In conclusion, you are indeed capable of understanding science, and your life will become more interesting!  Give it a try!  Don’t put it off until later!  Try it today!  The very first step often can be the hardest (see: “How Can I Take the First Step to Learn About Science?” )!

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE

WHAT DOES THE NEW NATIONAL SCIENCE FOUNDATION REPORT SAY ABOUT BIG PROBLEMS FOR US SCIENCE? 

 

SEI 2016 shows current status of scientific research and engineering developments in the US and other countries! (http://dr-monsrs.net)

SEI 2016 shows current status of scientific research and engineering developments in the US and other countries! (http://dr-monsrs.net)

 

The 2016 edition of the extensive and impressive serial report from the National Science Foundation (NSF), Science and Engineering Indicators 2016 (SEI 2016), has just appeared (see: “National Science Foundation Issues New Report on Status of Science, Engineering, and Research” ).  This large document purposely does not directly comment or interpret its figures; however, provision of these data by SEI 2016 leaves their interpretation open.  In this essay I will briefly examine what the new data in SEI 2016 say about several controversial topics and modern problems for science.

The SEI 2016 is available at: http://www.nsf.gov/statistics/2016/nsb20161/#/report , and its brief commentary, The Digest 2016, is available at: http://www.nsf.gov/statistics/2016/nsb20161/#/digest .  An excellent search page for SEI 2016 is provided at:  http://www.nsf.gov/statistics/2016/nsb20161/#/topics/ .  Citations in the following text all refer to SEI 2016, unless noted.

What is the present status of science and engineering in mainland China?  Could China surpass the US in science and engineering? 

Mainland China now is an extensive political and economic competitor with the US.  Many have the impression that the quality of Chinese science and engineering formerly was deficient, but now has improved and is nearing the level prevailing in other countries, including the US.  SEI 2016 shows that in 2013 the US workforce produced 27% of worldwide research and discovery, while China produced 20% [The Digest 2016, page 4].  Much research and development in China now aims to advance their military, technical,  and industrial capabilities; these efforts strongly depend on Chinese engineering.  Their increasing number of engineers is expected to start producing more science and engineering articles than will the US in 2014 [The Digest 2016, Figure A on page 13].  Since 2005, China already has produced more engineering publications than any other country [The Digest 2016, Figure B2 on page 13].  It seems likely that China’s efforts to advance education and training of their scientists and engineers will stimulate achieving equivalence and then soon will surpass the US output.  Hence, SEI 2016 shows that the US is likely to soon lose its premier status for science and engineering!

What does SEI 2016 say about the funding for basic research, which necessarily precedes what is done later by applied research and engineering developments?  

Data in SEI 2016 deals with both the basic and the applied aspects of research and development.  Excluding money for the Department of Defense, federal support of research in 2013 is given as 45% for basic studies, 41% for applied studies, and 14% for development [Figure 4-12].  I must disagree with their assumption that the many studies funded by the National Institutes of Health all are basic research; thus, I cannot accept the total for basic research given in SEI 2016 as being valid (i.e., definitions of basic versus applied are not provided).  I and many academic scientists are convinced that federal support for basic research has been diminishing, while federal grants for applied research are increasing in number.

What do the figures in SEI 2016 say about the pervasive problem of  hyper-competition for research grants between university scientists? 

Acquiring and maintaining an external research grant now is the major goal for faculty scientists.  At present, there is a vicious hyper-competition between all academic scientists for research grant awards (see: “All About Today’s Hyper-competition for Research Grants” ).  University scientists cannot be blamed for this very problematic situation  because if they do not acquire and hold research grants then they are basically dead.  The SEI 2016 does not directly address the destructive effects of hyper-competition on academic science.   However, the published data do show that only 19% of all applications for research grants from the National Institutes of Health, the largest federal agency making grants for biomedical research, were funded in 2014, and the trend for such funding is decreasing [Table 5-22].  Furthermore, SEI 2016 shows that the total number of doctoral scientist holders working in academic institutions continues to  increase [Appendix Table 5-13], meaning that the numbers of applicants and applications also are rising.  Thus, SEI 2016 documents that the hyper-competition for research grants keeps getting even more severe every year!

What do the new figures in SEI 2016 say about the predicted demise of science and research in modern US universities?

My earlier controversial proposal that university science now is dying (see:  “Could Science and Research Now Be Dying?” ) was based upon my impressions of a declining quality of modern science, large wastage of time by researchers struggling to get more and more research grants, conversion of university research into a business entity where money is everything, de-emphasis on basic research and corresponding increased emphasis on applied research, and, increasing corruption by professional scientists.  That situation is being caused by bad policies and priorities from both modern universities and the current research grant system.

SEI 2106 shows oodles of data that almost everyone will conclude is very solid evidence denying my prediction (i.e., since academic science in the US is doing such a productive job and provides so much of value to the public, then all must be excellent!).  I disagree, because the quality of research studies and publications seems to be decreasing!  The data in SEI 2016 almost entirely are measuring research quantity and largely ignore quality.  The Digest 2016 emphasizes that innovation is very important, and I agree; however, innovation is not measured or estimated for basic versus applied research, which is very necessary in order to evaluate their value.

If everything actually is so very wonderful with modern science in academia, then why are an increasing number of faculty scientists, postdocs, and prospective domestic graduate students so dismayed and dissatisfied?  Why have the number of doctoral scientists and engineers working as full-time faculty members been progressively declining?  Why did only 15.6% of all employed doctoral scientists and engineers work in academia/education in 2013 [Table 3-6]?  Why did 28.1% of all doctoral scientists and engineers now work outside business/industry in 2013 [Table 3-6]?  Why did 20% of all US doctoral scientists and engineers report that they  were working out-of-field because of a change in career or professional interests in 2013 [page of text following Table 3-14]?  All of the above data from SEI 2016 support my controversial proposal!

Conclusion!

It is fair to conclude that SEI 2016 indeed is very useful, but will not answer all the important questions  about modern science!

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE

LET’S FINISH 2015 WITH A HAPPY NOTE!

 

MC&HNY

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE 

 

SCIENCE AND THE GOVERNMENT: WHAT’S RIGHT AND WHAT’S WRONG? PART II. 

 

US national government interacts with everything and everyone, including science, research, and scientists! (http://dr-monsrs.net)
US national government interacts with everything and everyone, including science, research, and scientists!   (http://dr-monsrs.net)

 

Science in the United States (US) directly interacts with people, small and large businesses, education, the health system, engineers, students, media, etc.  One of the very largest and most extensive interactions of science is with the US national government.  This 2-part essay takes a critical look at the many involvements of our government with science, research,, and scientists.  Part I introduced the means and purposes of the government’s interactions with science (see:  “Part I” ); this Part II will examine the positive and negative features resulting from governmental policies and actions for science and research.

What are government research grants doing to university scientists and to the conduct of their research studies in 2015? 

Billions of dollars are spent each year by our national government to fund research grants to university scientists for their investigations in all branches of science [1,2].  In 2013, over 5 billion dollars were awarded by the National Science Foundation to support research and education [3]; the National Institutes of Health dispenses even more money for health-related research and clinical studies  Since everyone benefits from progress in science, the US federal government should be praised for financially supporting so many university researchers and research projects.

Unfortunately, it also is true that there are some very serious negative features and counterproductive outcomes of the present research grant system in the US:

(1)  there is huge wastage of grant funds for university research  (see:  “Wastage of Research Grant Money in Modern University Science” );

(2)  basic research is less emphasized and funded than is applied research, thereby decreasing generation of new concepts, technologies, and research directions;

(3)  the chief goals for becoming a university scientist have changed from discovering new knowledge, conducting innovative experimental investigations to answer important research questions, and developing new technologies, to acquiring more dollars from more research grants;

(4)  due to the enormous number of scientists and applications for research grants, many approved studies only receive partial funding, thereby preventing full completi0n of their specific aims;

(5)  the extensive current hyper-competition for research grant awards directly causes and stimulates corruption and dishonesty in science;

(6)  composing many new research grant applications now takes up more time for many university science faculty than does doing research experiments in their laboratories;

(7)  the present hyper-competition for research grant awards means that postdoctoral research fellows increasingly are expected to obtain research grants, instead of doing advanced experiments under the support from their mentor’s grant(s);

(8)  the epitome of becoming a famous scientist has been changed from a researcher who makes major discoveries, establishes new directions via breakthrough experiments, achieves new understanding, and innovates new technology, into a scientist-managerwho sits at a desk, rarely (if ever!) enters their laboratory rooms, and acquires some gigantic amount of research funding that enables employment of over a hundred research associates working inside a new research building;

(9)  money is absolutely everything for US universities in 2015, and their science departments are only business entities to generate increased profits (see:  “Money Now is Everything in Scientific Research at Universities” ); and,

(10)  items 1-9 produce degradation and decay of science and research in US universities, which explains why fewer college graduates now enter a career in science; their places in graduate schools now are filled by numerous foreign students, most of whom later find employment as science faculty and researchers in the US.

Some governmental interactions with science are good, but others are very bad! 

Among the good results, we can include that scientific research in the US  continues to produce new discoveries, issues many publications in science journals, creates some new directions, and makes some important progress.  US scientists continue to win the Nobel, Kavli, Lasker, or Breakthrough Prizes, and certainly are very deserving of being honored for their outstanding research achievements.  It is good that  governmental agencies regulate medical and laboratory research activities for reasons of safety, economy of expenses, and accountability, but this also can restrict creativity, innovation, and research freedom.  The US government should continue to support scientific research because that advances science and technology, and thereby leads to benefits for everyone in our society.

On the other hand, the quality of science and of the too numerous modern research publications both are going down.  The entire purpose of becoming a doctoral scientist working in universities has changed, and it is not surprising that this has resulted in the decrease of quality!  University science now is only a business where money and profits are everything, and faculty research scientists now are businessmen and businesswomen (see:  “What’s the New Main Job of Faculty Scientists Today?” ).  The federal research grant system fully supports all of this!  Obvious wastage of research funds continues to be accepted as an endemic problem in the research grant system (see: “Research Grants: What is Going on with the Indirect Costs of Doing Research?” ), making a mockery of the annual crying for more money to support science.  All these changes are obvious to most doctoral science faculty!

Hyper-competition for research grants could be the very worst feature of the status quo! 

The vicious and destructive hyper-competition for research grant awards degrades, distorts, and perverts scientific research at universities (see: “All About Today’s Hyper-competition for Research Grants” ).  This situation is directly caused by policies of both the funding agencies and the universities.  Both organizations approve and like the financial effects of the hyper-competition, and neither seems to understand how this  diverts and undermines scientific research.  Corruption and dishonesty in science are increasing every year, due in large part to the enormous pressures generated by this hyper-competition for research dollars (see:  “Why Would Any Scientist Ever Cheat?” ).  Hyper-competition now causes many university scientists to spend more time composing grant applications than they do working on research in their lab.

Why don’t the science faculty at universities speak out and take action? 

An obvious question is why faculty scientists tolerate the current degeneration in science and research at universities?  Several answers can be given.  First, university scientists in general are increasingly dissatisfied with their employment (see:  “Why are University Scientists Increasingly Upset with their Job?  Part I” , and, “Part II” ); every year some university scientists do move out of academia (of necessity, or by choice), and find a better job in industrial research, science-related companies, or non-science employments.  Second, most university scientists holding research grants do recognize the problems caused by the present system, but are too frightened to complain or criticize the research grant system since that could reduce their chances for renewal of their research funding; it seems safer and easier to simply keep quiet.  Third, US college students increasingly reject studying to get a PhD for a career in academia; increasing attention by graduate schools now is given to better preparing their science students for employment outside of universities or even outside of research.  Fourth, postdoctoral research fellows are organizing and announcing their misgivings about academic science in general and about abuses of their position as researchers in training.

My sad conclusion! 

Many of the problems I have described and discussed here are widely known to science faculty, but these issues are only rarely discussed in public or addressed by science societies at their annual meetings.  It thus appears to me that universities and the research grant system will have to get even worse before they can change to become better!

My foremost conclusion, based upon having personally seen how things used to be before the hyper-competition for research grants started and expanded, and, before the ongoing conversion of faculty scientists and postdoctoral research trainees into slaves, is thatuniversity science now is dying (see:  “Could Science and Research Now be Dying?” ).  I am not the only one to come to this sad conclusion (e.g., see:  “Science has been Murdered in the US, as Proclaimed by Kevin Ryan and Paul Craig Roberts!” ).

 

[1]  National Science Foundation, 2015.  Table 1. Federal obligations for research and development, by character of work, and for R&D plant: FYs 1951-2016.  Available on the internet at:  http://www.nsf.gov/statistics/2015/nsf15324/pdf/tab1.pdf .

[2]  American Association for the Advancement of Science, 2015.  Trends in federal R&D, FY 1976-2016.  Available o the internet at: http://www.aaas.org/sites/default/files/DefNon_1.jpg .

[3]  National Science Foundation, 2015.  TABLE 4. Federal obligations and outlays for research and development by agency: FYs 2013-2015.  Available on the internet at: http://www.nsf.gov/statistics/2015/nsf15324/pdf/tab4.pdf .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE 

 

WHISTLEBLOWERS IN SCIENCE ARE NECESSARY TO KEEP RESEARCH AND SCIENCE-BASED INDUSTRIES HONEST!

 

Direct quotations from Dr. Peter Wilmshurst, given in published statements. (http://dr-monsrs.net)

Quotations by Dr. Peter Wilmshurst, taken from various published statements.     (http://dr-monsrs.net)

 

Anyone, even professional scientists with a PhD or MD, can make an honest mistake.  However, falsification or other dishonesty by a research scientist is an inexcusable breach of trust.  Since the goal of research is to find the truth, mistakes or alleged falsehoods must be investigated and corrected, in order to let science progress.  Whistleblowers in science have been rather few, largely because it is so much easier to keep quiet and overlook falsehoods or even criminal misrepresentations; speaking out or initiating inquiries about corruption in research typically leads to counter-allegations, challenges to professional reputation, prolonged court cases, and, only small penalties for proven wrongdoers.  Hence, most doctoral scientists keep quiet, particularly if an allegation involves someone with a higher professional rank; this is known as the “code of silence”.

This article describes the amazing adventures of a clinical and research cardiologist in Britain, Peter Wilmshurst, MD, who became a successful whistleblower.  During his medical research work, he found clear unethical and criminal misconduct by individuals and companies, so he courageously initiated several inquiries.  Unlike many others, Dr. Wilmshurst refused to be silenced by bribes or threats, and ultimately forced honesty to prevail.  Dr. Wilmshurst undoubtedly is nothing less than a heroic medical scientist!

Whistleblowing by Dr. Wilmshurst protected heart patients from a dangerous new drug [1-5]! 

In the 1980’s, Dr. Wilmshurst was invited by a very large pharmaceutical company in the UK to participate in their clinical research trial evaluating the efficacy of a new oral drug intended to strengthen cardiac contractions in patients with heart failure.  His research data showed no effects upon contractility in patients, and revealed very dangerous side effects.  According to the company, research data from their own researchers were strongly and uniformly positive.

When he reported his research results to the manufacturer, he was asked to suppress his negative findings.  Wilmshurst refused to do that, and would not keep quiet about his research results despite threats. Later, it was revealed that several other independent researchers had found adverse results similar to those of Dr. Wilmshurst, but fear had prevented them from announcing their findings.  The company published the results of this clinical trial without including Wilmshurst’s research findings.  The government health agencies, professional medical organizations, and several science journals heard Wilmshurst’s pleas for an official investigation, but all were afraid to do anything!  More and more reports from clinical physicians showed numerous medical problems arising in treated patients; finally, marketing this new drug in the UK and the US was stopped by the manufacturer, but sales and usage continued in some developing countries.  Only after a large write-up about Dr. Wilmshurst and his dispute in the Guardian newspaper (UK) was this dangerous pharmaceutical completely withdrawn from the entire world.

More whistleblowing by Dr. Wilmshurst protected migraine patients from a dangerous new medical device [1-5]!

Dr. Wilmshurst had published a research report in 2000 linking migraine to a fairly common developmental defect in the heart, patent foramen ovale.  His expertise as a cardiologist and medical researcher led to an invitation to be a research consultant in a large clinical trial of a new implantable device manufactured by a small company in the US; with implantation into the heart, this was supposed to close the cardiac defect.  The clinical trial examined whether its use would also stop recurring migraine attacks.  His echocardiogram results for treated patients differed greatly from those gathered by the cardiologists implanting the new devices on behalf of the manufacturer.  The company disputed Dr. Wilmshurst’s research findings and claimed that echocardiograms from the implanting cardiologists were correct, but his results were wrong and invalid.

That company then refused to include his research results within their published report on the clinical trial.  The company’s presentation of their clinical trial at a cardiology meeting in Washington did not mention his divergent interpretations of post-implantation echocardiograms, but Dr. Wilmshurst was in the audience (i.e., he had presented some of his own research at this meeting that did not concern this experimental device).  A reporter interviewed Dr. Wilmshurst at this meeting and published some of his comments about the divergent data for this experimental device.  Two weeks later, the company’s lawyers notified him of a lawsuit in the UK for defamatory libel; several more lawsuits for libel followed.

Media and medical journals began describing Dr. Wilmshurst’s ongoing fight against these lawsuits, which cost him much personal money over several years of worrisome court proceedings.  Perhaps in response to their estimates that all these trials would have a total cost of over 14 million dollars, the small manufacturer abandoned production of the new device and went out of business; the bankruptcy ended the lawsuits.  Dr. Wilmshurst again had successfully fought research misconduct and commercial fraud, thereby saving clinical patients from any grief with this ineffective new device.

Important lessons to be learned from Dr. Wilmshurst’s activities [1-5]. 

Several disconcerting lessons about both dishonesty and honesty in research can be learned from this determined British medical researcher and whistleblower.

(1)  Since scientific research is conducted by humans, it is easily subject to unethical conduct due to government inaction, overriding ambition, personal greed, selfish commercial interest, silence about professional wrongdoing, wrongful self-interest, etc.

(2)  Money and commercial interests make total honesty particularly difficult for scientists in cases where their research results contradict or call into question what is desired; research must seek the truth, and is distorted when it looks for only a predetermined result.

(3)  Industrial companies often can pressure and overwhelm individuals by using their large financial resources for bribes, teams of specialized lawyers in expensive lawsuits, direct threats to impugn professional reputation and personal integrity, etc.

(4)  The most common reaction upon finding dishonesty in science is simply silence and a refusal to become involved; this is very easy to do, but such tolerance of dishonesty can hurt innocent people (i.e., patients) and probably is itself a form of dishonesty.

(5)  The penalties and punishments for dishonesty in research are usually small or absent, which then encourages more dishonesty; some scientists even have a very successful career with repeated dishonesty that is widely known [2].

(6)  Corruption within all aspects of medical research is much more extensive than is commonly thought.

The ultimate goal of science is to find the truth, no matter what it might be.  Independent research is the best human means to decide what is true and what is false.  Whistleblowing serves to promote honesty in business, government, and science.  Court cases usually are initiated to pressure and intimidate whistleblowers to keep quiet or repudiate their earlier research findings and conclusions.  Judges and lawyers do not know enough about science to decide about controversies in research (see:  “What Happens when Scientists Disagree? Part V: Lessons to be Learned When Scientists Disagree” ).  As Dr. Wilmshurst has stated, “The law courts are not the best way to determine scientific truth.” [4].

Peter Wilmshurst is a unique individual, and certainly is a hero! 

Dr. Wilmshurst stands up for honesty even when other research scientists say nothing and ignore obvious wrongdoing, compromise their professional ethics by research misconduct, or show no personal integrity.  His personal characteristics and professional standards as a medical research scientist make him a great role model for young scientists, physicians, and research workers in all the disciplines of science.  He does not fear getting involved and announcing the truth even when that means making shocking disclosures about highly placed figures, esteemed professional organizations, very famous science and medical journals, successful large industrial operations, and, malfunctioning agencies in the national government.

It should be obvious that Dr. Wilmshurst is a very distinctive individual who successfully fought against large manufacturing companies, government agencies, professional medical associations, professional science journals, lawyers and courts, and blatant threats to his reputation as a professional clinical researcher.  He could do all of that because he is an ethical scientist with exemplary honesty, personal courage, and professional integrity.  Whereas he speaks out about dishonesty in research, many others choose to keep silent and refuse to challenge dishonesty and corruption; thus, dishonesty in science is widely tolerated [1].

Peter Wilmshurst should be honored for his career-long dedication to honesty and high professional standards in research!  In 2003, he received the HealthWatch Annual Award in the UK for his work against corruption and fraud in medical science [1].

Further information is directly available from Dr. Wilmshurst on the internet! 

A wonderful video presentation by Peter Wilmshurst, “The Role of Whistleblowers in Improving the Integrity of the Evidence Base”, is highly recommended to all reading this article (see:   https://www.youtube.com/watch?v=Xze-yPubFIY ).

Also highly recommended to all by Dr.M are both the written version of the speech given by Dr. Wilmshurst on the occasion of his receiving the HealthWatch Annual Award for 2003 (see:  http://www.healthwatch-uk.org/20-awards/award-lectures/65-2003-dr-peter-wilmshurst.html ), and, a very recent 2015 interview of Dr. Wilmshurst by R. von Bredow & V. Hackenbroch for Spiegel Online International, “Whistleblower on Medical Research Fraud: ‘Positive Results Are Better for Your Career’” (see:  http://www.spiegel.de/international/zeitgeist/spiegel-interview-with-whistleblower-doctor-peter-wilmshurst-a-1052159.html ).

Concluding remarks.   

Whistleblowers are essential to help keep everyone honest!  Even large companies and very famous scientists can become dishonest, unethical, or unprofessional.  Lack of honesty in scientific research can lead to grave practical problems for unsuspecting innocent people.   For medical research, Dr. Wilmshurst states appropriately, “Truth should not be decided by those with greatest wealth using bullying and threats to make a scientist retract what he or she knows is true.” [4].

[1]  P. Wilmshurst, 2004.  Obstacles to honesty in medical research.  HealthWatch – UK, Newsletter #52, 2003 HealthWatch – UK Award Lecture.  (see:  http://healthwatch-uk.org/20-awards/award-lectures/65-2003-dr-peter-wilmshurst.html ).

[2]  P. Wilmshurst, 2007.  Dishonesty in medical research.  Medico-Legal Journal 75:3-12. (see:  http://www.medico-legalsociety.org.uk/articles/dishonesty_in_medical_research.pdf ).

[3]  R. Smith, 2012.  A successful and cheerful whistleblower.  The BMJ (British Medical Journal) Blogs, October 10, 2012.  (see:  http://blogs.bmj.com/bmj/2012/10/10/richard-smith-a-successful-an.d-cheerful-whistleblower/ ).

[4]  R. A. Robbins, 2012.  Profiles in medical courage: Peter Wilmshurst, the physician fugitive.  Southwest Journal of Pulmonary and Critical Care, April 27, 2012/4:134-141.  (see:  http://www.swjpcc.com/general-medicine/2012/4/27/profiles-in-medical-courage-peter-wilmshurst-the-physician-f.html ).

[5]  P. Wilmshurst, 2012.  Justice Committee – written evidence submitted by Dr. Peter Wilmshurst.  UK Parliament, House of Commons, Select Committee on Science and Technology.  (see:  http://www.publications.parliament.uk/pa/cm201213/cmselect/cmsctech/163/163vw17.htm ).

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE 

 

A JACKPOT FOR SCIENTIFIC RESEARCH IS CREATED BY JAMES E. AND VIRGINIA STOWERS!  PART II: THE STOWERS INSTITUTE IS A TERRIFIC NEW MODEL FOR FUNDING SCIENTIFIC RESEARCH!

 

Cover of the 2007 autobiography by James E. Stowers with Jack Jonathan. Published by Andrews McMeel Publishing, and available from many booksellers on the internet. (http://dr-monsrs.net)

Cover of the 2007 autobiography by James E. Stowers with Jack Jonathan. Published by Andrews McMeel Publishing, and available from many booksellers on the internet. (http://dr-monsrs.net)

 

The life of a major benefactor to biomedical research, James E. Stowers, Jr. (1924-2014), was briefly introduced in the previous article (see: “Part I” ).  I have conjectured there that Jim Stowers must have understood exactly what are the very biggest problems and impediments for research in modern universities.  The Stowers Institute for Medical Research (see:  http://www.stowers.org/ ) precludes those destructive problems and represents a new model to better organize the funding and operations of scientific research at universities.  Part II now examines in more detail the differences between research centers at universities and the Stowers Institute.  I particularly hope that science faculty and administrators at universities will learn about and discuss this new model.

Major differences for science operations between universities and the Stowers Institute. 

The organization of financial support for scientific research at the Stowers Institute differs dramatically from that at universities in the US.  Universities now view science and research only as a business enterprise that is a good means to increase their financial income (i.e., from research grant awards).  This very widespread policy is so counterproductive for research progress that some even have concluded that university science must be dying (e.g., see: “Could Science and Research now be Dying?” and“Science has been Murdered in the United States, as Proclaimed by Kevin Ryan and Paul Craig Roberts” ).  Below are given the chief reasons why universities are so extensively  different from the Stowers Institute.

The number one reason why science in academia is so very unlike that at the Stowers Institute is that universities directly insist that faculty scientists rent laboratory space and support all expenses for their investigations by acquiring research grants.  For universities, faculty scientists now are only a means to the end of increasing their profits (see: “Money now is Everything in Scientific Research at Universities” ); the science faculty presently is forced to spend too much time and emotional energy on trying to acquire more research grant awards, instead of actually doing experiments to produce more new results.  The Stowers Institute replaces research grants by the very large  endowment from Jim Stowers and his wife, Virginia; this endowment is purposefully arranged to continue generating new funds that will be used for future research expenses.

The second reason is that advances in basic research now are downplayed by the funding agencies and by universities, due to its greater distance from generating new products and financial rewards.  Universities and the research grant system give much emphasis toapplied research and commercial involvements, since those produce income  more readily.  The Stowers Institute specifically targets basic research, which is the forerunner for all applied research.

A third reason is that the research grant system does not provide much direct support forexperimental projects needing 10-20 years to complete.  The most significant questions for research are very large and complex, so answering them simply cannot be accomplished with only the usual 3-5 years of supported research study; getting a research grant renewed always is uncertain, even for famous faculty scientists.  This time limitation discourages scientists from studying the most important research questions. At the Stowers Institute, projects on large research questions are able to be undertaken.

The fourth reason is that the Stowers Institute employs research scientists using contract renewals instead of the traditional tenure system found in universities.  Nowadays, the main way to get tenured in university science departments is to be successful at acquiring research grants; the tenure system mostly counts dollars and differs greatly from the ongoing evaluation of research quality utilized at the Stowers Institute.  Thus, universities actually are rewarding their science faculty for business skills rather than rewarding them for research breakthroughs and science progress.

A fifth reason is that the intellectual atmosphere at the Stowers Institute is much freer and more encouraging of creativity, curiosity, innovation, and interdisciplinary studies than is found at modern universities.  Business is not the endpoint of science; at the Stowers Institute, the openly sought endpoint is research excellence.

What are the effects of these differences upon science and research? 

For today’s universities, science is just a business and their faculty scientists are businessmen and businesswomen.  Their pursuit of money fundamentally changes and distorts the true aim of scientific research.  The chief target of science faculty is no longer to discover new knowledge and increase understanding.  Instead, daily life for many university scientists involves the hyper-competition for research grants, which wastes both time and money, and, makes it very difficult to trust any fellow faculty scientists for advice  and collaborations (see: “All about Today’s Hyper-competition for Research Grants” ).  Accordingly, science at universities now is distorted, degenerated, and perverted; this extensive decay subverts science and research at universities.

Turning university research into a commercial activity distorts the traditional aims of science, and increases the corruption of scientists there (see: “Why is It so very Hard to Eliminate Fraud and Corruption in Scientists?” ).  Basic research remains as important as it always has been, and should not be repressed in favor of applied research.  The Stowers Institute recognizes these values and succeeds in pursuing excellence in biomedical science; its success seems to be directly due to the philosophy and organization instituted by its founder and directors.

The policies and organization that Jim Stowers initiated clearly go against all the serious problems for science at universities.  His distinctive design emphasizes using and encouraging creativity, exploration of new ideas by innovative research, vigorous collaborations, and much hard work; this atmosphere aims to result in research breakthroughs and encourages new concepts in basic science.  Jim Stowers and co-organizers clearly have shown how this idealistic atmosphere can be accomplished in today’s world.  It is noteworthy that some large pharmaceutical firms endow their own research institutes quite similarly to what has been done for the Stowers Institute.

Is this huge difference only a question of money? 

Of course, many will say that the donation of a billion dollars would let their university activate enlightened policies for its science.  I disagree, and believe that money alone willnot remedy the negative aspects of current university science!  Also needed are wholesale changes in administrative policies, independent leadership, organization, philosophy, working atmosphere, and, much less dedication to commercialization.  All of these are essential!  Although making these changes would rescue university science from its present debilitation, it seems unlikely that such will be undertaken.

Any excuse by universities that they do not have such large funds does not explain why thehuge endowments already in-hand at some universities are not spent for the support of scientific research and researchers in a manner analogous to the Stowers Institute.  Instead, these very large funds are used to try to further increase the financial income and profits of academic institutions (e.g., all sorts of entertaining amusements on and off campus, flashy brochures and other publicity,  programs for visiting prospective students and parents, public courses and lectures, travel programs, solicitation of donations, sports activities and athletic contests, television specials, etc.).

Why cannot university science departments mimic the model of the Stowers Institute, and thereby free themselves from their major problems? 

If it is not only a question of money, then there must be something else that impedes adopting the Stowers Institute as a model for conducting good scientific research.  Opinions for identifying this hidden  factor will differ, but I see the actual cause as being the commercialization of science at universities (see: “What is the Very Biggest Problem for Science Today?” ).  This commercialization changes the whole nature of academic science and research.  The research grant system was intended to enable scientific research, not to change and distort it.  Universities were supposed to produce new knowledge and concepts, to teach, and to investigate the truth, not to become financial centers.  All these ideals have changed so greatly at universities that good scientific research now is hindered and foundering.  The actual priorities are quite different from the needed priorities; until these are changed, faculty scientists cannot hope to escape from their enslavement by the research grant system.

Concluding remarks. 

The Stowers Institute for Medical Research stands as a very successful new model for promoting research advances and science progress.  The big difference to science that Jim and Virginia Stowers have made in the US can and should be copied by universities to reorganize and better foster their high quality research.  This large change in priorities and operations need not be done all at once (i.e., simultaneously for all science departments); it could start with one science department and then expand to others over a 10-year period.  The payoff to universities for removing the restrictions and distortions imposed by viewing scientific research only as a commercial business enterprise, will be a substantial elevation of the quality and vigor of their science activities, and, a more reliable future input of income.

The success of the Stowers Institute dramatically proves that science does not need to be harnessed and hobbled by the research grant system!  Bypassing the grave current problems at universities stemming from the research grant system will reduce or remove the vicious hyper-competition for research grant awards that badly distorts their science, and will increase job satisfaction for the science faculty.  The benefits shown by this new model give some hope that university science need not continue to decay and degenerate until it actually dies (see: “Could Science and Research now be Dying?” ).

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU 

                                                          UNDER THE WEBSITE TITLE

 

A JACKPOT FOR SCIENTIFIC RESEARCH IS CREATED BY JAMES E. AND VIRGINIA STOWERS!  PART I.

 

Cover of the 2007 autobiography by James E. Stowers with Jack Jonathan. Published by Andrews McMeel Publishing, and available from many booksellers on the internet. (http://dr-monsrs.net)

Cover of the 2007 autobiography by James E. Stowers with Jack Jonathan. Published by Andrews McMeel Publishing, and available from many booksellers on the internet. (http://dr-monsrs.net)

 

James E Stowers, Jr. (1924-12014) must have understood exactly what are the very biggest problems and impediments for modern science before he and his wife founded and generously financed a wonderful new research institute.  This large research center provides a dramatic new model for the funding of scientific research that avoids the dreadful problems now damaging science at universities.  Part I will briefly relate his interesting history and the unusual organization of the Stowers Institute for Medical Research.  Part II will explain in detail why this new direction for supporting scientific research is so unusual, very worthy of emulation, and giving hope that the dying science in modern universities can be rescued.

What sort of person was Jim Stowers?

Jim Stowers was born, raised, and educated in Missouri.  Since he recently passed away at age 90, many publications describe his life story [e.g., 1-3].  With his father and grandfather being physicians, he first studied for some years at the University of Missouri Medical School before entering the US Army Air Force where he served as a fighter pilot in WW2.  When back home, young Stowers became a business entrepreneur.  In 1958 he set up Twentieth Century Mutual Funds, which concentrated on serving individual people; this private company grew under his leadership to later be renamed American Century Investments.  That financial business was very successful and his personal fortune grew substantially as the firm became one of the largest mutual fund companies in the US.

Jim Stowers has co-authored several popular books including an autobiography (see image above under the title).  He and his wife, Virginia, a professional nurse, have several children and grandchildren.  Jim and Virginia Stowers each were stricken with cancer, but both fortunately became cancer survivors and dedicated philanthropists for science.  In 1994, they targeted high quality science by founding the Stowers Institute for Medical Research in their hometown, Kansas City, Missouri.  Their personal donations and endowment (Hope Shares Endowment) total around 2 billion dollars!  Jim Stowers is quoted as saying, “My wife and I wanted to give back something more valuable than money to the millions of people who made our success possible, and we think that through science is the best way we can do it” [2].

A good recent video nicely illustrates the life and activities of Jim Stowers; “James E. Stowers, Jr. Tribute Video” is from American Century Investments, and is available on the internet at:  https://www.youtube.com/watch?v=P3g531Fwi64&feature=youtu.be .

The Stowers Institute for Medical Research [1-3]. 

Since its opening in 2000, the Stowers Institute has grown to now have 22 research programs and over 500 research workers.  Over 150 research projects by in-house scientists currently involve 75 postdocs, 58 graduate students, 80 research technicians, and 73 support scientists.  In 2012, The Scientist magazine announced that their annual survey had found the Stowers Institute to rank in the top 3 places for scientists to work worldwide.  Dr.M encourages everyone to take a look at the fascinating website of the Stowers Institute at:  http://www.stowers.org/ .

The mission of the Stowers Institute is to conduct the highest quality scientific research in order to find and understand the secrets of life.  By focusing innovative research on genes and proteins it aims to contribute to the betterment of people by its discoveries relating to the causes, treatments, and prevention of diseases.  The Stowers Institute has a number of unusual features distinguishing it from other biomedical research centers.  Unlike all universities, it is self-supported from the very large endowment from Jim and Virginia Stowers; this means that its faculty-level scientists do not need to spend time worrying about the vagaries of research grants, and instead can concentrate on vigorously doing significant research work.  The size and purposeful organization of the endowment funds will generate ongoing income for the future expenses of this major research center.

Another unusual characteristic of the Stowers Institute is that its multidisciplinary teamwork-based approach is directed onto pure basic research (i.e., to be able to advance detection and clinical treatment of cancer and other difficult diseases, it is necessary to first understand very much more about the activities of genes and proteins in normal and pathological cells).  The Stowers Institute is physically organized to facilitate internal collaborative interactions, and provides the many support services and facilities needed for research operations by its principal investigators (e.g., core labs, shared research equipment, technology centers, etc., with each staffed by technical experts).

Two good recent videos show the Stowers Institute and its activities for science.  “NBC features the Stowers Institute for Medical Researh” is from American Century Investments, and is available on the internet at:  https://www.youtube.com/watch?v=dMRIrk9nW8k .  “The Stowers Institute for Medical Research – The Local Show” from station KCPT shows some research scientists in action at the Stowers Institute; it is available at:  https://www.youtube.com/watch?v=1quFJfeuG0o&spfreload=10 .

The BioMed Valley Discoveries organization. 

The Stowers Institute, which features non-clinical basic research, is affiliated with the nearby BioMed Valley Discoveries, Inc.,  also funded by the Stowers endowment.  This company (see:  https://biomed-valley.com ) features applied pre-clinical and clinical research, by conducting new drug trials and clinical research investigations stemming from the basic findings at the Stowers Institute.  Emphasis is given to translating advances from pure basic research into new and better clinical practices at the bedside of patients.  It does not hesitate to work on disease-related projects considered unprofitable by the large pharmaceutical companies.  Success in its ventures presumably will lead to later commercial developments that will add more funds to the Stowers endowment.

Concluding remarks. 

Everyone must admit that Jim and Virginia Stowers have made a big difference to biomedical science in the US.  The Stowers Institute for Medical Research stands as a successful and inspiring new model for promoting research advances and science progress; this will be discussed in more detail in Part II.  The payoff for the public will come later when new findings generated from innovative basic research at the Stowers Institute result in development of more effective clinical treatments for human diseases.

 

[1]  The Stowers Institute for Medical Research, 2014.  James E. Stowers, Jr.  Available on the internet at:  http://www.stowers.org/James-E-Stowers .

[2]  American Century Investments, 2014.  Innovator and philanthropist dedicated life to helping others.  Available on the internet at:https://corporate.americancentury.com/content/americancentury/corporate/en/press/news-releases/2014/stowers-tribute.html .

[3]  E. A. Harris, The New York Times, 2014.  James E. Stowers, Jr., benefactor of medical research, dies at 90.  Available on the internet at: http://www.nytimes.com/2014/03/19/business/james-e-stowers-jr-benefactor-of-medical-research-dies-at-90.html .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU 

                                                          UNDER THE WEBSITE TITLE

 

MORE HIDDEN DISHONESTY IN SCIENCE IS UNCOVERED! 

 

More dishonesty in science is uncovered! (http://dr-monsrs.net)
More dishonesty in science is being uncovered!  (http://dr-monsrs.net)

We have previously looked at dishonesty in research and the corruption in modern science (see: “Introduction to Cheating and Corruption in Science” , and “Why Would any Scientist ever Cheat?” ).  Unethical conduct by university scientists is driven by their constant large job pressures to obtain more grant awards and to publish more research reports.  The hyper-competition for acquiring research grants (see: “All About Today’s Hyper-competition for Research Grants” ) actually is the major cause for cheating on applications for research grants by today’s faculty scientists.

Corruption and dishonesty in science commonly are thought to be very infrequent.  Due to the great difficulty in detecting and proving dishonesty, the actual number of miscreants remains quite unknown.  Nevertheless, new cases of proven misconduct by research scientists continue to pop up every year.  Today’s article examines yet another newer kind of dishonesty and corruption in modern science.

How do scientists publish the results of their research studies? 

Traditionally, scientists compose research reports after finishing the analysis of their experimental data, and then submit this manuscript to a professional science journal.   The journal editor, who is usually a renowned senior scientist, (1) supervises the peer review of each manuscript, comprising a critical examination by several selected expert referees (i.e., other knowledgeable scientists), (2) decides about publication, rejection, or required revision, and (3) later notifies the submitting author of the final decision.  This critical review functions to prevent publication of poor or false data, misleading or incorrect statements, mistakes, and unwarranted conclusions.  The process ofmanuscript revision permits authors to add missing items, remove extraneous or incorrect content, correct other mistakes, and, respond to questions and criticisms from the reviewers and the editor.  The ultimate role of the journal editor is to safeguard science and research.

Background to dishonesty with publishing scientific research results in journals. 

Science journals and publishers, as well as scientists, have established requirements for this publication process, so it is as objective and honest as is humanly possible.  These standards now include requiring explicit statements by the author(s) about possible conflicts of interest or financial involvements, and the actual work done by each listed co-author.  Some science journals also require a pledge of originality, certain statistical testing of research data in the manuscript, presentation or availability of all the experimental data, etc.  This publication system mostly has seemed to work quite well for preventing dishonesty by scientist authors, but it must be suspected that many instances of dishonesty remain undetected.  Certainly, some big mistakes in examining and publishing science manuscripts do continue to occur (see: “A Final Judgment is Given to Dr. Haruko Obokata: Misconduct of Research!” ).

Dishonesty in the publication process for research reports recently has been highlighted as involving the many conflicts of interest in the critical reviewing of submitted manuscripts [e.g., 1-6].  The total integrity of the expert referees always has previously been assumed, and several reviewers are assigned to examine each manuscript.  However, incidents now have been uncovered where the appointed referees included some who had a known or hidden association with the author(s); other recent cases show involvement of false reviews and of commercial concerns that supply these [e.g., 1,5,6].  The peer review of manuscripts is designed to prevent fraud, mistakes, inadequacies, and misleading conclusions from being published.  When scholarly reviews are compromised, independent and honest judgments of science manuscripts by journal publishers could not be conducted.

Cheating in the review of manuscripts is difficult to detect unless someone blows the whistle, or some other expert happens to spot a specific error or hidden conflict of interest and has the guts to make official inquiries.  In some of the recently revealed cases, the compromised evaluation of manuscripts appears to have been undertaken intentionally in an organized deceitful manner [e.g., 4-6].  Increasing concern about unethical manipulation of the publication process has resulted from high numbers of retractions of published articles and revision of standards for getting scientific research results published [e.g., 5,6].  Any manipulation of the manuscript evaluation  process is completely unacceptable because that permits bad data, false data, wrong statements, and unwarranted conclusions to be published, thereby undermining the very integrity of science.  Any scientist, including journal referees, can make an honest mistake in judgment, but a positively- or negatively-biased review of a manuscript is not some mistake, and is itself a misconduct.

Dishonesty in publishing medical research reports. 

Journals publishing clinical research results seem to draw more attention to problems in the manuscript review process [e.g., 1-4], and could be more frequently compromised than journals publishing research results from basic science.  This is unavoidable due to the unavoidable involvement of the medical journals with the financial interests of big pharmaceutical companies.  Medical science journals publishing results from clinical research about new treatments and new pharmaceutical agents have long been trying to ensure that they are extra careful in reviewing manuscripts.  This is particularly so where scientists working at pharmaceutical research labs, or research physicians in medical schools and hospitals, are authoring a science report about clinical trials where new agents are investigated and evaluated.  Following the later review and approval by federal regulators, decisions about publication in clinical journals make a big difference for the amount of future usage of these agents by practicing physicians; publication of such reports thereby has a strong influence in determining the size of the manufacturer’s profits from sales.

Cheating in clinical science journals [2-4] involves manuscript reviewers who knowingly ignore or do not intercept data that is questionable and conclusions that are unwarranted by the data shown. Positively-biased peer reviewers who recommend immediate publication with no changes required, negate the entire purpose of the manuscript review process.  Such dishonesty on manuscript reviews for clinical journals might well be more common than anyone has ever dared to think.  Two very experienced and well-known editors of the most totally prestigious medical journals recently issued amazing statements that they believe this type of cheating is very frequent.  Dr. Marcia Angell, ,former Editor-in-Chief of The New England Journal of Medicine, wrote in 2009, “It is simply no longer possible to believe much of the clinical research that is published … ” [2].  Dr. Richard Horton, current Editor-in-Chief of The Lancet, wrote in 2015, “… much of the scientific literature, perhaps half, may simply be untrue.” [3].  Both  these dramatic statements are truly shocking!  If the manuscript review process really is so flawed and manipulated as is proposed by 2 very experienced editors, then it is likely that many manuscript referees themselves must be actively dishonest participants in fraudulent science.

Concluding remarks. 

The recent explicit statements made by very renowned editors of 2 top medical science journals [2,3] make it shockingly obvious that cheating by scientific researchers  might be very much more frequent than anyone has previously guessed.  For university research scientists, this unethical conduct mostly is stimulated by their very strong job pressures; for medical research scientists, this unethical conduct mainly is stimulated by hopes for financial gain.  Both situations are improper, and are very bad for science and research.  The holes created by multiple conflicts of interest in publishing of science journals must be plugged.

The ultimate basis for all dishonesty in science is normal human nature.  That fact makes it especially difficult to stop or eliminate this behavioral problem (see: “Why is it so Very Hard to Eliminate Fraud and Corruption in Scientists” ).  Only the most sincere personal dedication by scientists to total honesty (i.e., via more intense education about ethics), much more vigorous efforts to detect cheating and dishonesty (i.e., by journals and granting agencies), and, much harsher penalties for proven misconduct (i.e., from the employers and granting agencies) can give hope that unethical conduct by professional scientists can be lessened and even stopped.

[1]  H. Marcovitch, 2010.  Editors, publishers, impact factors, and reprint income.  PLoS Med., e1000355.  Available on the internet at:  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964337/ .

[2]  M. Angell, 2009.  Drug companies & doctors: A story of corruption.  The New York Review of Books, January 15, 2009 issue.  Available on  the internet at:  http://www.nybooks.com/articles/archives/2009/jan/15/drug-companies-doctorsa-study-of-corruption/ .

[3]  R. Horton, 2015.  Offline: what is medicines 5 sigma?  The Lancet, April 11, 2015  385:1380.  Available on the internet at:  http://www.thelancet.com .

[4]  A. Walia, 2015.  Editor in chief of world’s best known medical journal: half of all the literature is false.  Global Research, May 23, 2015.  Available on the internet at:  http://www.global research.ca/editor-in-chief-of-worlds-best-known-medical-journal-half-of-all-the-literature-is-false/5451305 .

[5]  F. Barbash, 2015.  Major publisher retracts 43 scientific papers amid wider peer-review scandal.  The Washington Post, Morning Mix, March 27, 2015.  Available on the internet at:  http://www.washingtonpost.com/news/morning-mix/wp/2015/03/27/fabricated-peer-reviews-prompt-scientific-journal-to-retract-43-papers-systematic-scheme-may-affect-other-journals/ .

[6]  J. Achenbach for the Washington Post, 2015.  Scandals prompt return to peer review and reproducible experiments.  The Guardian, February 7, 2015.  Available on the internet at:  http://www.theguardian.com/science/2015/feb/07/scientific-research-peer-review-reproducing-data .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU 

                                                          UNDER THE WEBSITE TITLE

 

A FINAL JUDGMENT IS GIVEN TO DR. HARUKO OBOKATA: MISCONDUCT OF RESEARCH!

 

Scientific research findings are not always valid! (http://dr-monsrs.net)

Scientific research findings are not always valid!   (http://dr-monsrs.net)

 

Unfortunately, some doctoral scientists cheat.  With the terrible job pressures  in working on research at modern universities, the temptation to take the easy way out by being dishonest is always present (see: “Introduction to Cheating and Corruption in Science”).  Examples of dishonesty in science continue to pop up almost every month [e.g., 1-4], and many more escape notice.  Fortunately, most professional scientists have good ethical standards and do not cheat.  The few corrupted scientists who are caught usually are penalized in a rather soft manner, and publicity always is minimized so as to avoid undermining the enormous trust that the public has for professional scientists.

This article presents the sad story of Dr. Haruko Obokata, a young Japanese researcher who now has been very thoroughly investigated and penalized for research fraud [e.g., 3,4].  This case is particularly worthy of attention because it dramatically illustrates what can make a scientist cheat (see: “Why Would any Scientist ever Cheat?” ), and the consequences that can follow later.

Background to the controversy about Dr. Obokata’s research. 

Dr. Obokata worked as a researcher at the Riken Center for Developmental Biology, one of the most prestigious research institutes in Japan.  She investigated “stem cells“, which are pluripotent cells that can be induced to become different normal cell types.  Medical science is very interested in stem cells for possible use in repairing and replacing damaged organs.  Dr. Obokata reported finding a simple and easy new method to produce many stem cells with 2 papers in the stellar science journal, Nature.  This research finding was a big surprise; her new method was totally unexpected, gave wonderful results, and was labeled as being revolutionary.  Dr. Obokata  became very famous overnight; many news stories about her spectacular research results were issued, and interviews with her were featured on television.  Soon after her publications appeared, other scientists eagerly tried to duplicate her reported results, but they all were not successful; this rapidly led to many questions about her amazing research findings and the truthfulness of her research.  For science, research results must be reproducible to be considered valid.

Due to the enlarging doubts raised about her research results, local investigations were undertaken, but these only produced more questions and more controversy.  Extensive investigations followed, and produced no verification of her new methodology.  Throughout this controversy, Dr. Obokata maintained that her research results were real, but she was not able to explain why other scientists could not duplicate her results.  Many coworkers, supervisors, and other researchers then were questioned as the large controversy expanded further.  Finally, Dr. Obokata was asked to duplicate her own published lab results at Riken while she was being observed by a panel of fellow scientists; after 8 months of work in the lab, the results of this definitive test were negative [3].  Just a few months ago, after almost 2 years of investigations by institutions and governmental bodies,  an expert panel in Japan finished their deliberations and issued a final verdict that Dr. Obokata was guilty of research misconduct [3,4].

Consequences of the guilty verdict for Dr. Obokata. 

This verdict now is finalized, the papers in Nature were retracted, and, Dr. Obokata has resigned from her position at Riken and been fined [3,4].  The penalties in this judgment also include reprimands for several of her supervisors and associates; one supervisor was so upset at the shame of this very public situation that he committed suicide at age 52 [3].  A number of high officials at the reorganized Riken were replaced in the accompanying administrative scandal; due to this widely publicized situation, the national government was stimulated to issue revised standards for research conduct and misconduct [4].

Many feel that the cause of Dr. Obokata’s unethical activities with data manipulation and fabrication once again lies in the intense pressures on academic scientists to make important discoveries, publish spectacular reports, and obtain more research funding.  The exact same pressures today are acting upon very many other university scientists all over the world; undoubtedly, some others also will succumb to the temptation to use dishonest means to overcome these job pressures.

Is this misconduct a general feature in science, or is it peculiar to certain cultures? 

As I have noted previously (see: “Why is it so Very Hard to Eliminate Fraud and Corruption in Scientists?” ), the ultimate cause of unethical conduct in scientific research is simply human nature.  Scientists are just like all other people in that they can and do make mistakes and wrong judgments.  Thus, I believe that this old problem of dishonesty in science is very general.  Human cultures certainly do influence their science.  In some countries, new doctoral theses complete with tables of data and full analyses are available for purchase.  In such  cases, more dishonesty must be expected later when the new doctoral scientist starts researching and publishing.  However, even large modern countries with very extensive good research operations still have ongoing problems with corruption and misconduct of research.  Thus, this general problem is not only due to culture or nationality.

The case with Dr. Obokata is somewhat less severe than another recent finding of large shocking misconduct at the University of Tokyo [e.g., 4].  These scandals led to  important changes in policies, awareness, and education about  science ethics in Japan.  I must explicitly note here that this problem is not peculiar to Japan!  I have no reservations in making that statement, since I know many honest scientists in Japan, and always am most positively impressed with the high quality of Japanese science.  These recent ethical scandals in Japan’s research enterprise are just like those in other modern countries.

What does this example of misconduct say about modern science?  

The events in Dr. Obokata’s case are typical for previous instances where cheating at research has been caught: (1) it takes a whole big bunch of time and effort to finally reach a verdict, simply because it is extremely difficult to ever prove dishonesty when the alleged perpetrator maintains insistence that the false results are really true; (2) the investigations always expand to include collaborators and coworkers, supervisors, reviewers and editors, and, the prevailing atmosphere for professional ethics at the institution(s) involved; (3) after a verdict finally is reached, all of science gets a bad name; and, (4) although reforms are made to prevent this from happening so easily, the actual causes for misconduct in modern science always remain unaffected.

Nobody ever seems to focus attention and reforms on the gigantic pressures faced by all scientists doing research in modern universities (e.g., get more research grant money, get more research publications, get more experimental results and more discoveries, get more research breakthroughs, etc.).  These are not simply job duties or expectations, but rather are constant worries for university scientists.  Failure to succeed in these efforts will have bad consequences for the career of any faculty scientist.  By not countering the actual causes of dishonesty and corruption the only possible expectation is that this problem for science will not only continue, but also will increase.  The case of Dr. Obokata is not unique; many other cheaters are never caught, and the pressures to be dishonest remain active throughout the entire world of science.

Concluding remarks. 

Dishonesty in science and cheating at research are ongoing very general problems that will not disappear due to wishful thinking.  Most cheating in science begins with a single individual, but soon spreads to involve associated research workers and administrators.  Much stronger penalties, much closer attention to detecting misconduct, and much better training about the necessity for total honesty in science are needed (see: “Why is it  so Very Hard to Eliminate Fraud and Corruption in Scientists?” ).  Cheating in order to get more research grant money is particularly liable to be increasing due to the overwhelminghyper-competition for acquiring research grants among modern university scientists (see: “All about Today’s Hyper-competition for Research Grants” ).

[1]  Barbash, F., 2014.  An obscure academic journal.  A memorable peer review scandal. The Washington Post, July 11, 2014, Morning Mix.  Available on the internet at: http://www.washingtonpost.com/news/morning-mix/wp/2014/07/11/the-most-brazen-peer-review-scandal-anyone-can-remember/ .

[2]  Barbash, F., 2015.  Major publisher retracts 43 scientific papers amid wider fake peer-review scandal.  The Washington Post, March 27, 2015, Morning Mix.  Available on the internet at: http://www.washingtonpost.com/news/morning-mix/wp/2015/03/27/fabricated-peer-reviews-prompt-scientific-journal-to-retract-43-papers-systematic-scheme-may-affect-other-journals/ .

[3]  Rasko, J. and Power, C., 2015.  What pushes scientists to lie?  The disturbing but familiar story of Haruko Obokata.  The Guardian , February 18, 2015.  Available on the internet at:  http://www.theguardian.com/science/2015/feb/18/haruko-obokata-stap-cells-controversy-scientists-lie .  SPECIAL NOTE:  This is an extremely well-written and very perceptive report.  All scientists should read it!  Ditto for grad students and postdocs!

[4]  The Japan Times, Opinion, 2015.  Blight of research misconduct.  The Japan Times, February 18, 2015.  Available on the internet at: http://www.japantimes.co.jp/opinion/2015/02/18/editorials/blight-research-misconduct .

 

 

GO BACK TO HOME PAGE    OR    SCROLL UP!   TO MENU 

                                                          UNDER THE WEBSITE TITLE

 

 

UNASKED QUESTIONS ABOUT RESEARCH GRANTS FOR SCIENCE, AND MY ANSWERS!

Answers are badly needed for the many questions about research grants in science! (http://dr-monsrs.net)Answers are badly needed for the many questions about research grants in science!      (http://dr-monsrs.net)
 

Research grants pay for all the many expenses of doing scientific research in universities, and now are the primary focus for faculty scientists.  Size and number of grants determines salary level, promotions, amount of assigned laboratory space, teaching duties required, professional status and reputation, and, ability to have graduate students working in a given lab.  Research grants typically are awarded to science faculty for 3-5 years; grant renewals are not always successful, or can be funded only partially.  Without continuing to acquire and maintain this external funding, it is basically impossible to be employed or doing research as a  university scientist in the United States.

This condition causes many secondary problems, all of which impede research progress.  In my opinion, the very worst of these is the hyper-competition for research grants (see:“All About Today’s Hyper-competition for Research Grants” ).  Every scientist  is competing with every other scientist for an award from a limited pool of money.  For university scientists, this activity consumes giant amounts of time that would and should be spent on research experiments, burns up large amounts of personal energy, distorts emotions and disturbs sleep,  causes and encourages dishonesty, and, is very frustrating whenever  applications are not successful.  I previously discussed how all this causes so many university scientists to be dissatisfied with their career (see: “Why are University Scientists Increasingly Upset with their Job?  Part I” , and, “Part II” ).

This essay gives questions about the present research grant system that usually are notasked, and my best answers to them no matter how disturbing that might be.  I have phrased these questions just as they would be given by non-scientist readers of this website.  Everyone should know that I have reviewed grant applications as a member of several special review panels, held several research grants (for which I am very thankful!), and, also had several of my applications rejected.  Hence, my responses to these questions are based upon my own personal experiences as a faculty scientist.

Maybe the hyper-competition actually is good!  Isn’t it true that the very best research scientists always will be funded? 

Not always!  Sometimes the “best research scientists” also get rejected, or are only partially funded; despite their status, they can get careless, arrogant, or too aged.  Nevertheless, leading scientists are favored to stay funded because  they understand exactly how the grant system works, and have easier interactions with officials at the granting agencies.  In my opinion, only indirect correlations exist between success in acquiring very many research dollars, and production of many breakthrough research results.  Excelling in either one says little about results in the other.

Do scientists doing very good research always get funded? 

Not always!  Getting a grant or a renewal always is chancy and never is certain, since this decision involves strategy, governmental budgets, contacts with officials at the granting agencies, which side of the bed reviewers get up from, and many other non-sciencefactors.  Young scientists spend very many years with their research training and early work as a member of some science faculty, but then can be abruptly discharged for having trouble or failing at this business task; remember that these scientists are trained to be researchers, and are not graduates of a business school!

Don’t university scientists mainly need to get good research publications? 

The main job of university scientists today is no longer to get good publications, but rather is to acquire more research grant funds!  I doubt that science graduate students ever intend to work for over a decade to become a faculty scientist just so they can spend their professional life chasing money (see: “What is the New Main Job of Faculty Scientists Today?” ).  But, that is exactly what the hyper-competition forces them to do!  For most researchers, the hyper-competition for grants in universities badly distorts what it means to be a scientist; hence, I believe it is very bad for science.

Aren’t scientists trained about how to deal with this research grant problem when they were graduate students or postdocs? 

There certainly are no organized sessions or courses in finance, commerce, or business given to graduate students in science, even though university science now certainly is a big business (see: “Money Now is Everything in Scientific Research at Universities” .

Isn’t there some way faculty scientists can avoid this situation? 

Yes indeed, but it ain’t so easy!  Switching to a research job in industry or to a non-research job outside universities will resolve this problem situation.  The main way  university scientists try to preclude this problem is to acquire 2 (or more!) research grants; then, if one award later is not renewed, the other one then will keep the faculty scientist’s career intact.  Of course, this strategy of seeking to acquire multiple research grants has its own costs and directly serves to make the hyper-competition even more intense.

Why not simply require all faculty scientists to get 2 research grants?  

This idea ignores the fact that running a productive research lab in academia takes up a huge bunch of precious time.  Faculty scientists with 2 research grants usually become so short of time that they must switch gears so as to function as a research manager, rather than continue as a research scientist.  Some managers even reserve one half-day per week where they are not to be interrupted for any reason by anyone while they work in their own lab.  Another fact to be recognized is that most university scientists today do not ever hold 2 concurrent research grants.

Isn’t there counselling and help given to faculty members who lose their grant? 

At some universities this now is done, thank goodness!  However, at many others, the affected professionals must try to get funded again all by themselves.  It is a sign of the vicious nature of the hyper-competition for research grants that any scientists who try to help a fellow faculty colleague (i.e., a competitor) necessarily are also hurting themselves.

Cannot some research experiments be done without a grant?  

This could be done, but it is not permitted!  Upon rejection of an application for renewal, faculty scientists soon lose their assigned laboratory space, thus precluding any more experiments; at some institutions, each then is viewed as a “loser” and is suspected of being a “failed scientist”.  I consider this system of “feast or famine” to be horribly ridiculous; nevertheless, it does show loud and clear what is the true end of scientific research in modern universities (see: “What is the New Main Job of Faculty Scientists Today?”).

Is there some other way to support science without causing such difficult problems? 

This is theoretically possible, but in practice it is nearly impossible because the present research grant system is so deeply entrenched.  There is a very large activation barrier to making any changes since universities and leaders at the granting agencies both are very happy with the status quo (i.e., universities get good profits from the research grants of their science faculty, and research grant agencies receive an increasing number of applications for financial support).  Although this question is discussed in private by university scientists, I am not aware of any open general discussions about trying out some alternative approaches to support research activities in science.

If the research grant system really is so troubled and has such awful effects, why don’t all the university scientists protest? 

Every university scientist holding a research grant knows better than to complain about being a slave in the modern research grant system, because they want to continue being funded.  As the saying goes, “Do not bite the hand that feeds you”!

My comments and conclusions. 

I see the present problems with the research grant system as being very unfortunate for science.  The current situation has bad effects on research progress and clearly is very vicious to some scientists.  This system is  strongly supported by both all universities and the granting agencies.  Any proposals to make any changes will be strongly opposed by all the beneficiaries of this system, including funded scientists working at universities.

My main conclusions are that (1) business and money now rule science, and (2) everything about scientific research at universities now is money (see: “Introduction to Money in Modern Scientific Research” , and, “3 Money Cycles Support Scientific Research” ).  I  certainly am not the only one to reach these conclusions (i.e., search for “money in science” on any internet browser, and you will see what I mean!).

Quality of experimental research, creative ideas for experiments, derivation of innovative concepts, and working hard with a difficult project are no longer very important.  All that matters now is to get the money!  All these negatives form a strong basis for why I regretfully believe that science now is dying (see: “Could Science and Research Now be Dying?” ).

 

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU 

                                                          UNDER THE WEBSITE TITLE

 

WHAT HAPPENS WHEN SCIENTISTS DISAGREE? PART III: IS GLYPHOSATE POISONING US ALL?

 

Controversies Involving Science Affect Everyone! (http://dr-monsrs.net)

Controversies Involving Science Affect Everyone!   (http://dr-monsrs.net)

The small organic chemical, glyphosate, kills many broadleaf plants and is the chief ingredient of the very popular herbicide, Roundup®, produced by the Monsanto Corporation.  Glyphosate is used in agriculture to kill weeds and also for pre-harvesting applications to wheat.  Its usage on farms rose dramatically when Monsanto also developed Roundup® Ready crop seeds (see:  http://www.monsanto.com/products/pages/monsanto-agricultural-seeds.aspx ); these mutants of corn, soybeans, and other crops have resistance to higher levels of glyphosate that kill their nonresistant counterparts  Today, (1) Roundup® and strains of crops more tolerant to glyphosate are in very widespread use on farms all over the world, (2) normal pollination by airborne dispersal easily results in crossbreeding of resistant and non-resistant strains, (3) widespread usage of Roundup® in modern agriculture means that resistant strains automatically spread and take over any neighboring fields originally planted with only non-resistant strains, and, (4) the amount of glyphosate-containing agricultural products consumed by humans is substantial and is increasing.

The first article in this series provided a general background for controversies involving scientists (see: Part I ).  The second article discussed the ongoing controversy about global warming and climate change (see: Part II ).  This essay examines the ongoing controversy about whether glyphosate is benign or harmful to humans.

How does glyphosate get inside humans?  

Glyphosate enters human bodies via several different routes: (1) ingestion of agricultural crop products containing glyphosate due to treatment with Roundup®, (2) drinking of water having small or large glyphosate contents, (3) breathing of atmospheric glyphosate microparticulates due to its widespread dispersal during agricultural applications, (4) ingestion of farm aninals which ate corn or other plant material treated with Roundup®, and, (5) ingestion of bovine milk, chicken eggs, and other animal products.

Basically, everyone living on this planet now has glyphosate within their body.  Monsanto originally performed short-term research studies showing that glyphosate has very low toxic effects upon humans.  However, long-term research data for chronic exposures are missing.  Very high levels of glyphosate inside human food sources mostly are being ignored by regulatory agencies, many farmers, and most scientists.  The primary question for health researchers and clinical doctors is, “Does glyphosate have any toxic and pathological effects in humans?”.  This is a very straightforward research question and should be readily answered by scientific investigations.

What does scientific research on glyphosate find about its safety? 

An extensive examination of published biochemical investigations recently showed that glyphosate could have quite a few undesired consequences upon humans and mammals, aquatic organisms, and bacteria [1].  The changes in metabolism caused by glyphosate affect cytochrome P450, enzymes, sulfate balance, amino-acid dynamics, and the human gut microbiome; these changes are alleged to be involved in such pathological states as Alzheimer’s disease, autism, breast cancer, developmental anomalies, irritable bowel syndrome, obesity, and vitamin-D deficiency [1].  People already have been exposed to Roundup®  for many years, but its causation of disease states remains uncertain; plausable associations alone are not sufficient to establish causality.  Worrisome new research findings showing involvement of glyphosate in human pathology are disputed by Monsanto and some other scientists.

A good published, but retracted, experimental study by Séralini et al [2] investigated chronic toxicity in rats exposed to glyphosate in various forms and dosages.  This professional research report aroused an amazing degree of controversy [3,4], resulting in empty disputes, personal attacks, and improper activities by the publishing journal [4].  Regretably, that dispute includes documented examples where scientists associated with Monsanto have restricted publication of research manuscripts showing that glyphosate can be quite harmful to the health of humans and animals; this has caused accusations that some science journals are not honest, use double standards for review of manuscripts, and have become subordinate to commerce [4].

The United States Food and Drug Administration.

If Roundup® might be dangerous, why is it not being researched and regulated more?  The United States Food and Drug Administration (FDA) is charged with monitoring and regulating public safety of all the many chemicals, foods, and materials used in our country ( http://www.fda.gov/Food/ ).  Toxicologists working at the FDA investigated glyphosate toxicity and established that anything below a certain level is not harmful to humans.  Toxicologists in other countries conducted similar evaluations to establish a safe level, but some of their approved values are smaller than that validated by the FDA.  Certain countries even ban use of glyphosate and genetically-modified crops resistant to glyphosate.  Nevertheless, millions of pounds of glyphosate now are used annually on farms around the globe [1].

Almost all Americans are totally reliant on the FDA to keep them safe from poisons and dangerous foods.  What does the FDA say about the glyphosate controversy?  The answer is “not much”, since their scientists apparently are not conducting all the needed measurements.  Why have these not been conducted?   Or, why were the needed assays indeed conducted, but the results are not released?  Is Monsanto influencing risk assessment by the FDA?

Could human diseases be caused by glyphosate? 

Several different disease states now are postulated to be caused directly or indirectly by glyphosate [e.g., 1].  Where the incidence of these pathological states has risen in time, data for the amount and distribution of glyphosate in people runs a closely parallel course.  The health implications of the glyphosate controversy are very extensive; it has even been proposed that the problem associated with gluten in bread actually is a problem with its glyphosate content [1].  Clearly, much more research is badly needed; despite the increasing association of glyphosate with pathology, definitive causality of human diseases by this chemical has not yet been proven.

Many glyphosate-containing weed-killers now are being marketed to farmers.  These contain different additives (e.g., adjuvants, detergents, surfactants) that enhance the toxic effects of glyphosate upon plants.   This enhancement is due to augmented absorption by agricultural plants, thereby giving humans eating them an increased dosage [5].  The amount of glyphosate in foods also is increased by the fact that many farmers now are adding additional Roundup® to their crops to deal with the new presence of glyphosate-resistant weeds.  Global governmental regulations of approved glyphosate levels have conveniently been raised by large amounts to handle this new situation [1].  Thus, despite the increasing evidence suggesting that glyphosate could have some bad effects upon human health, people eat more and more Roundup® each and every year [5].

Concluding discussion. 

The controversy about the alleged human toxicity of glyphosate and Roundup® already is more than a decade old.  Despite the suggested pathology, the amount of glyphosate eaten by humnans and accumulating inside them constantly increases [5].  It is alarming that the potential public health disaster of chronic glyphosate toxicity is not being researched much more vigorously by scientists.

This ongoing controversy not only has scientists arguing with other scientists, but also has scientists disputing with a very large well-established commercial company.  The scientific issues regarding glyphosate toxicity are rather straightforward, but the needed research studies are not being conducted; it is suspected that these investigations are being hindered by Monsanto’s total focus on business profits.

While this controversy drags on, what should people do?  Foods now are grown by some farmers without using exposure to Roundup® and are becoming more readily available in grocery stores.  As one researcher involved with the glyphosate controversy has advised, “Go organic!” [6].

 

[1]  Samsel, A., and Seneff, S., 2013.  Review.  Glyphosate’s suppression of cytochrome P450 enzymes and amino acid biosynthesis by the gut microbiome: Pathways to modern diseases.  Entropy  15:1416-1463.

[2]  Séralini, G. E., Clair, E., Mesnage, R., Gress, S., Defarge, N., Melatesta, M., Hennequin, D., and de Vendômois, J. S., 2012.  Retracted.  Long term toxicity if a Roundup herbicide and a Roundup-tolerant genetically modified maize.  Food and Chemical Toxicology  50:4221-4231.

[3]  Séralini, G. E., Mesnage, R., Defarge, N., Gress, S., Hennequin, D., Clair, E., Malatesta, M., and de Vendômois, J. S., 2013.  Answers to critics: why there is a long term toxicity due to NK603 Roundup-tolerant genetically modified maize and to a Roundup herbicide.  Food and Chemical Toxicology  53:476-483.

[4]  Robinson, C., and Latham, J., 2013.  The Goodman affair: Monsanto targets the heart of science.  Independent Science News, May 20, 2013.  Available on the internet at: http://www.independentsciencenews.org/science-medical/the-goodman-affair-monsanto-targets-the-heart-of-science/ ).

[5]  Bohn, T., and Cuhra, M. 2014.  How “extreme levels” of Roundup in food became the industry norm.  Independent Science News, March 24, 2014.  Available on the internet at:  http://www.independentsciencenews.org/news/how-extreme-levels-of-roundup-in-food-became-the-industry-norm/ .

[6]  Seneff, S., 2014.  Slide #48 from presentation on glyphosate hosted by the MIT and Wellesley Alumni Associations, April 28, 2014.  Available on the internet at: http://people.csail.mit.edu/seneff/California_glyphosate.pdf .

 

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU 

                                                           UNDER THE WEBSITE TITLE

 

 

WHAT HAPPENS WHEN SCIENTISTS DISAGREE? PART II: WHY IS THERE SUCH A LONG CONTROVERSY ABOUT GLOBAL WARMING AND CLIMATE CHANGE?

 

Controversies Involving Science Affect Everyone! (http://dr-monsrs.net)

Controversies Involving Science Affect Everyone! (http://dr-monsrs.net)

The much disputed controversy about global warming features scientists, politicians, business leaders, and ordinary people arguing for or against it.  Questions about global warming have shifted into a general debate about climate change.  Clearly, this ongoing dispute is not yet even close to being resolved.  This essay examines how and why this prolonged controversy is so very difficult to resolve despite the input of many professional scientists; the previous article in this series provided a general background for controversies involving scientists (see Part I at:  http://dr-monsrs.net/2015/04/18/what-happens-when-scientists-disagree-part-i-background-to-controversies-involving-scientists/).

What is global warming?

In a nutshell, global warming is a worldwide increase in ambient temperature.  This environmental parameter has been measured directly for recent periods or estimated indirectly from analysis of antarctic ice cores for hundreds and thousands of previous years.  Global temperature has increased since the industrial revolution began (ca. 1870) and has risen more rapidly since 1970.  It is known that elevating the amount of certain gases in the atmosphere (e.g., water, carbon dioxide, and methane) causes increased retention of heat; this is known as the “greenhouse effect”.  It is postulated that the global temperature is rising largely due to increased levels of carbon dioxide coming from burning of the fossil fuels, coal and oil.  Since further warming will cause melting of glaciers, increased ocean heights, changes in weather patterns, and other disruptive effects, the use of coal and oil must be decreased globally to stop any further rises in temperture.  Climate change includes global warming, as well as global cooling and other large environmental changes in the modern world.

For those wanting more information about global warming and climate change there are very many materials available on the internet.  I recommend several informative presentations for general readers: (1) “Causes of climate change” at:http://www.epa.gov/climatechange/science/causes.html ), (2) “How are humans responsible for  global warming?” at:  http://www.edf.org/climate/human-activity-is-causing-global-warming ), and (3) “5 scientific reasons that global warming isn’t happening” at: http://townhall.com/columnists/johnhawkins/2014/02/18/5-scientific-reasons-that-global-warming-isnt-happening-n1796423/page/full ).  An especially good gathering of arguments both for and against the official standard concept of global warming is available ( “Is human activity primarily responsible for global climate change?” at:  http://climatechange.procon.org ), and will help readers to come to their own judgment.

The standard very official concept about global warming. 

The standardized viewpoint about global warming accepts that the temperature worldwide is indeed rising.  The primary cause of this temperature increase is human activities; people cause global warming by burning coal and oil to produce increased amounts of greenhouse gases, and also by paving and urbanization, generating carbon black microparticulates, deforestation, etc.  Much emphasis in the standard concept of global warming is given to the production increased carbon dioxide.  If no intervention is taken, this concept predicts more  warming that will cause very alarming changes in ocean levels, weather patterns, and life as we know it.

What are the main issues in the global warming and climate change controversy? 

Global warming and climate change involve several different assumptions, all of which are being questioned.  (1) Is there really an increase in global temperature?  (2) What are the main causes of this rise in global temperature?  (3) Is there actually a recent large increase in atmospheric carbon dioxide?  (4) What causes the increased carbon dioxide?   For all these queries, the chief question that must be asked is, “What is the evidence?”

Starting at the very beginning, one must first ask what is the evidence that there really is any global warming? (i.e., are measured global temperatures actually increased in recent times.  A positive answer leads to several other related questions.  (1) How much warmer is this average figure?  (2) How was surface temperature of the entire planet measured or estimated?  (3)  Are all countries and regions warmer, or are some simultaneously cooler?  (4) Have similar variations in global temperature ever been observed previously?  These questions involve science, and should be answered and debated by expert scientists (e.g., climatologists, meteorologists, oceanographers, atmospheric physicists, etc.).

Anyone seeking answers to questions about global warming must inquire what is the primary cause of such climate change?  A big controversy involves the hypothesis that human activities cause this environmental change.  There are several other possible causes, including natural weather cycles, large shifts in solar energy discharges, changes in Earth’s orientation and distance from the Sun, large increases in the global number of humans and animals producing atmospheric carbon dioxide through their normal respiration, etc.  Good science demands that alternative explanations must be examined.

The controversy about climate change engages all the foregoing plus corresponding questions about global cooling.  From our knowledge about forming and melting glaciers in the ice ages, we know that there have been very prominent changes in temperature during the distant past.  The causes of these well-known changes still are not clear.  Today, some portions of the globe have very increased temperatures and severe droughts.  Shorter term increases or decreases in temperatures occur in response to natural changes in the environment, including activity of the Sun, humidity levels, patterns of ocean currents, rain cycles, seasonal effects, etc.

What have scientists said and done in this ongoing controversy? 

In additional to gathering and analyzing data, scientists debate what conclusions are valid and ask lots of questions.  In 1988, the United Nations convened a panel of expert climatologists to assess global warming and advise about what new policies are needed.  That group, the United Nations International Panel on Climate Change (UNIPCC) constructed the official standard concept of global warming described above.  An independent non-governmental panel of expert climatologists has been established more recently; this group, the Nongovernmental International Panel on Climate Change (NIPCC), has issued reports with conclusions about global warming that are very different from those of the UNIPCC.  Many other scientists have been involved from the beginning, and continue to dispute almost everything.  A survey of the literature by climate scientists (1991-2011) revealed that around 97% endorsed the consensus position that humans cause global warming (see J. Cook et al. 2013 Environmental Research Letters 8:024024 at:http://iopscience.iop.org/1748-9326/8/2/024024 ).  However, that figure directly contradicts the assertion that 31,000 other scientists, including many not working in climatology, do not see any conclusive evidence that the standard concept is valid ( http://ossfoundation.us/projects/environment/global-warming/myths/31000-scientists-say-no-convincing-evidence ).  Clearly, in 2015 many scientists disagree about the official standard concept of global warming and climate change!

What is the present status of this ongoing dispute? 

Almost everything in the controversial official version of global warming now is being questioned and debated vigorously.  Expert scientists are arguing against other expert scientists.  Many science organizations accept and support the official concept about global warming as being due to human activities producing increased levels of carbon dioxide.  All government agencies monolithically endorse the official viewpoint and promote activating strong intervention by the government.  Groups of environmentalists also support the official viewpoint.

On the other hand, some former supporters of the standard position now strongly deny the validity of global warming.  These dissenters even include some members of the original expert panel (UNIPCC) that constructed the standard concept for global warming!  Many individual scientists and science groups now are contrasting predictions made from the official viewpoint with recent measurements showing cooler temperatures and enlarging sizes of polar icecaps; thus, the recent data support global cooling, rather than global warming!  Predictions from the official coincept do not match the reality.

Debates about this controversy involve politics, finances, emotions, and egos, as well as science.  Questions and dissenting views by scientists are increasing despite documented efforts to suppress dissent against the standard concept  [e.g., 1-5].  It is most disconcerting that this and other unethical behavior has been uncovered for some of the scientists strongly involved in this controversy [e.g., 1-5]; that distracts attention from the actual scientific issues being debated, and reduces trust by the public in all scientists.

Why is global warming and climate change so hard to establish or deny conclusively? 

Several distinct reasons can be identified why expert scientists have not been able to resolve this ongoing controversy.  First, the standard official concept of global warming increasingly seems to be invalid.  It’s predictions about rising temperatures, melting of polar icecaps, and alarming changes in weather patterns do not match reality.  It cannot explain large environmental changes that currently are observed.  Solid evidence for a recent rise in temperatures is questionable or missing.  One commentator recently has even dared to ask, “Is global warming a hoax?” [5].  Second, the complexity of this controversy is enormous.  In addition to science, it involves finances, politics, industries, and governments.  Arguments involve much more than scientific facts and figures; egos, emotions, careers, repression of questions, and, predictions of alarming disasters are prominent.  Third, the use of “global” in the questions being addressed is questionable because there are very many quite different regions and different human activities involved; many so-called global datapoints actually are averages or extrapolations.  How exactly can the temperature in Nepal be meaningfully averaged with that of Greenland, New York City, Tunis, and Tahiti?  Similarly, how can the different human activities within these 5 parts of our planet be averaged in a meaningful way?  Fourth, this long dispute has been made more difficult for science to resolve by the uncovering of data manipulations and repressions of dissent [e.g., 1-5].

Concluding discussion. 

From the materials given above and all the pro/con data now available, I must conclude that this controversy is a quagmire, and that it is unlikely to be resolved.  Both sides in this long dispute have developed very hard positions, and both are supported by some scientists, some research findings, and some group organizations; those conditions can only lead to a stalemate.  Additionally, politics and commercial interests now have strong involvement in this dispute, and often overwhelm the input of science.  Scientific research can produce new facts, figures, concepts, and ideas, but it cannot readily deal with a quagmire that is a jumble of emotionally and financially charged positions.

The fact that new laws and regulations already are being proposed in advance of any consensus agreement by scientists and the public suggests that some unannounced agenda is at work here.  The primary purpose of trying to reduce carbon emissions and establish a global carbon tax appears to be installing greater regulation of industries, economies, and nations; reduction of carbon dioxide levels is only a phoney excuse for establishing increased governmental controls over everything and everyone.

 

[1]  Jasper, W. F., 2012.  “Climate science” in shambles: Real scientists battle UN agenda.  Available on the internet at: http://www.thenewamerican.com/tech/environment/item/11998-%E2%80%9Cclimate-science%E2%80%9D-in-shambles-real-scientists-battle-un-agenda .

[2]  Newman, A., 2013.  Top scientists slam and ridicule UN IPCC report.  Available on the internet at:  http://www.thenewamerican.com/tech/environment/item/16643-top-scientists-slam-and-ridicule-un-ipcc-climate-report .

[3]  Newman, A., 2014.  U.S. agencies accused of fudging data to show global warming.  Available on the internet at: http://www.thenewamerican.com/tech/environment/item/17500-u-s-agencies-accused-of-fudging-data-to-show-global-warming ).

[4]  Booker, C., the Telegraph, 2015.  The fiddling with temperature data is the biggest science scandal ever.  Available on the internet at: http://www.telegraph.co.uk/news/earth/environment/globalwarming/11395516/The-fiddling-with-temperature-data-is-the-biggest-science-scandal-ever.html .

[5]  Hiserodt, E. & Terrell, R., 2015.  Is global warming a hoax?  Available on the internet at: http://www.thenewamerican.com/tech/environment/item/19840-is-global-warming-a-hoax .

 

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU 

                                                           UNDER THE WEBSITE TITLE

 

 

SCIENCE HAS BEEN MURDERED IN THE UNITED STATES, AS PROCLAIMED BY KEVIN RYAN AND PAUL CRAIG ROBERTS!

 Quotes (2015) from Kevin Roberts and Paul Craig Roberts (http://www.paulcraigroberts.org/2015/02/17/guest-column-kevin-ryan-science-died-911/)

Quotes (2015) from Kevin R. Ryan and Paul Craig Roberts, about the murder of science (http://www.paulcraigroberts.org/2015/02/17/guest-column-kevin-ryan-science-died-911/)

Kevin R. Ryan was discharged from working at the Underwriters Laboratories after he began inquiring about test results for construction materials used for building the World Trade Center.  After their targeted destruction in 2001, he and others actively continue to investigate and question the validity of the government’s examinations and official explanation for that signal event in our country.  He has published several books about 9/11, and now co-edits several journals focused on that dramatic day (see: http://digwithin.net/about/ ).

Paul Craig Roberts is a very sharp and outspoken writer covering many topics about the economy, politics, history, and modern society, both in the United States (U.S.) and the world.  He acquired much inside knowledge about how our national government works during his earlier service as Assistant Secretary of the Treasury for Economic Policy (1981-82).  Dr. Roberts holds a Ph.D. in Economics (University of Virginia), and has published many incisive books.  His website, “Institute for Political Economy” (see: http://www.paulcraigroberts.org ), issues his perceptive examinations and forthright conclusions for many current events and the difficult problems we all face.

A very recent essay by Kevin Ryan, entitled “How Science Died on 9/11” (see: http://digwithin.net ), forms the core for Dr. Roberts’ thoughts about the viability of science in the modern U.S. (see:  http://www.paulcraigroberts.org/2015/02/17/guest-column-kevin-ryan-science-died-911/ ).  Both authors feel that science in America died after the 9/11 catastrophe when it was murdered by the numerous research scientists remaining silent about the many contradictions and false evidence for what really did occur and what couldnot have happened on that tragic day.  If research scientists fail to stay 100% honest then they have forsaken the main ideal of science (i.e., a search for the truth); there can be no such thing as partial or part-time honesty for scientists.  Ryan characterizes the government’s evidence and conclusions as involving “pseudo-science”, rather than real science.

For several years, a slowly increasing number of engineers, architects, and physical scientists have joined together to dispute the truth of the official explanations proposed for 9/11 by the U.S. federal government (see: “Science at 9/11” at: http://www.ae911truth.org ).  Ryan and Roverts believe that some or many of the other American scientists must have: (1) foresaken their search for the truth, (2) knowingly espoused false conclusions, or (3) remained silent about the scientific and engineering evidence supporting demolition as the true cause for the collapse of the 3 buildings on 9/11.

Roberts then goes even further, by ascribing the unexpected silence of many scientists to the facts that: (1) science today can be bought, (2) money now can determine results in science, and. (3) university research scientists all are totally dependent during their career upon the continued flow of research grant money from the governmental science agencies, and therefore they dare not dispute the methods or conclusions of the official governmental investigation of 9/11.

Both authors conclude that science now is dead in the U.S.  Ryan and Roberts use their own analysis and critical reasoning to come to many of the same conclusions about the dismal health of modern science that I described earlier (see: “Could Science and Research now be Dying?” ).   Although I do believe that science now is dying, I must reject their all-encompassing conclusion that science is dead, because some good researchers do continue their productive search for new truth and thereby are making important new advances in science and technology.   Thus, I feel that science is in a morbid state, but is not yet dead.  Nevertheless, I must agree with their contention that most or all otherwise good scientists have not protested or spoken out about the falsity of research and the trashing of standards for total honesty in science, with regard to finding the true causes of the events on 9/11.  Truth no longer matters for modern science as much as does money; it is indeed very sad that today money is supreme at modern universities (see “Money now is Everything in Scientific Research at Universities” ), thereby badly undercutting the integrity of university science.

Kevin Ryan should be complimented for his courageous questioning about the many scientific and engineering findings that contradict the official conclusions for what happened on 9/11.  Paul Craig Roberts emphasizes exactly what is wrong with today’s university science in the U.S.  Clearly, the misuse of money has made traditional science so hard to pursue with honestly that it has either murdered or mortally wounded scientific research.  These 2 authors should be praised for realizing the bad consequences of money upon being totally honest in science, and for forcefully bringing public attention to the vigorous dispute about what is true and what is false concerning 9/11.   Eventually, everyone else will recognize both the unpleasant truth about 9/11, and the bad consequences of the current morbid decay in science.

Dr.M most heartily recommends that everyone should read and think about this very stimulating and provocative essay by Kevin Ryan and Paul Craig Roberts (see:http://www.paulcraigroberts.org/2015/02/17/guest-column-kevin-ryan-science-died-911/ ).

 

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU 

                                                         UNDER THE WEBSITE TITLE

 

WHY DOES THE UNITED STATES NOW HAVE SO VERY MANY FOREIGN GRADUATE STUDENTS IN SCIENCE? PART II.

 

Why does the United States have sp many Foreign Graduate Students? (http://dr-monsrs.net)

Why does the United States now have so very many Foreign Graduate Students? (http://dr-monsrs.net)

 

The first part of this essay (see:  “Part I” ) described the growing number of foreign graduate students now immigrating into the United States (U.S.).  They first study for a doctoral degree in science, followed by postdoctoral training, and then obtain a professional science job in U.S. universities and industries.  Part II will (1) examine what this situation means for U.S. science now and in the future, (2) identify the ultimate cause of this worrisome development, and, (3) explain how this problematic condition can best be resolved.

What does this situation mean for the future of science in the U.S.? 

Judgments of the balance between the positive  and negative aspects of this new situation (see: “Part I” ) are quite uncertain.  Discussions  about the quality and results of these immigrants always are difficult.  Nevertheless, important questions must be discussed!  My views here will be given about the following prominent questions.  (1) How does this situation affect the quality of science and scientists in the U.S.?  (2) To what extent does this situation decrease the number of graduates from U.S. colleges choosing to pursue advanced studies in science?  (3) What does this mean for the future of science in the U.S.?

Regarding the effects upon science of the numerous foreign graduate students immigrating into the U.S., problems with intellectual maturity, skills with independent design of experiments and research manipulations, and, misguided practices in professional ethics, all seem to me to be rather equivalent between the foreign and domestic populations.  Thus, there is not much negative influence on the quality of scientists resulting from the added population of foreign students studying science in U.S. graduate schools.

The question about whether the many foreign graduate students now here is influencing the decision of native-born college graduates not to enter a career in science is paralleled by another open question about whether the entrance of new foreign doctoral scientists into faculty positions in U.S. universities and high positions in U.S. industries makes native college graduates less likely to want to work with their foreign-born associates in science.  I feel that the answer to both these questions is “probably not yet”, because this situation is still at a fairly early stage of development.  Such questions currently are more a worry for the future, and are not so acute at present.  However, when there will be more research positions and science jobs having mostly or even exclusively foreign-born U.S.-trained scientists, then these questions will rise to the top of the pile.

The future of science in the U.S. seems likely to be badly impacted as soon as the present situation matures and evolves with even greater numbers of foreign graduate students.  Many unpleasant questions about hidden policies and confused practices then will arise for the 2 populations of young scientists (e.g., should either population ever be favored, who is in charge, should some number of research grants be reserved for awarding to either population, is there really equal opportunity for acquiring research grants, is there really equal opportunity for advancement in industry, who exactly is foreign, how do foreigners differ from native citizens, should members of any ethnic group be forbidden to review research grant applications submitted by others in the same group, do all university faculty have to give lectures and to teach in undergraduate and graduate courses, etc.).  All of these queries deserve to be fully discussed.

In my opinion, the very biggest and most important problem with the enlarging population of young foreign graduate students is are they now causing a decrease in the already weak interest of young Americans to enter a career in science?  If carried to extreme, some aspects of science in the U.S. then could become the exclusive domain of certain foreigners.  Nobody knows to what extent this already is happening now, due to the lack of surveys and data.  However, I believe that if such an imbalanced arrangement causes fewer American college students to want to study science, then that will have really bad effects upon the future of U.S. science

What exactly might happen? 

Part I only indicated in a rather gentle way the present degree to which this worrisome new trend has taken hold within the U.S.  Let us now look more closely at just how this peculiar situation could enlarge and mature in the near future.  I have seen some science labs in U.S. universities where there were outstanding graduate students and Postdocs, originating both from abroad and from the U.S.  I also actually have observed with my own eyes an active faculty laboratory with numerous foreign graduate students and postdocs, where there was not even one individual science worker born in the U.S.  These young foreign workers all were from the same country, and were working under a full professor originating from that same land.  This scenario is a notable situation that could become more frequent in the U.S.; I regard this to be both unhealthy and inappropriate.  All readers should be able to perceive that U.S.-born college graduates might not feel very comfortable working within such a research laboratory; that feeling is not due to racism, but comes from normal human nature for not wanting to be the “odd man out”.

The most extreme extent for this worrisome development is best illustrated by the amazing story of a certain School of Engineering and Technology in the U.S. which I myself have personally observed.  I was told that over 75% of their graduate students are from the same foreign country, and that this School is much better known inside that country than is the very prestigious Massachusetts Institute of Technology!  Everyone suspects that before any doctoral candidate graduates, they must make arrangements for a new young student from their foreign undergraduate school or home town to send in an application for admission to this graduate program.  This unofficial policy is the basis for an especially successful business operation!  It results in that institution always getting lots of tuition since it never has the problem with decreasing enrollments now found in many other U.S. university schools, and always is able to produce many theses, patents, and professional research publications.  The level of success and its momentum in this very real example are so great that there would be no bad effects stemming from any future changes in economic or political conditions.

I do not doubt that this special mechanism for ensuring the continuing success of a graduate school will be emulated and adopted by other universities.  This same educational institution now has been publicly noted to have over 90% of its graduate students in Electrical Engineering coming from foreign lands in 2013 [1]!  Even more shocking is the fact that there were 6 other universities and technology institutes in the U.S. with a similar very high percentage for this discipline [1]!  Thus, the prediction given in the first sentence of this paragraph now has come true!  Yes, the future already is here! 

Who or what should be blamed for this problematic situation? 

Foreign graduate students are not to be blamed for this new situation, since they are simply taking advantage of the available opportunity to get educated and find a good job in science here.  Foreign postdocs appointed to new a professional position in U.S. universities or industries also are not to be blamed, since they are winning an open competition for these jobs.  Foreign governments should not be blamed for facilitating the movement of their young students into U.S. graduate schools and jobs, since that helps young scientists from their country gain valuable education and  income not otherwise available.

Some feel that blame should be given to the federal and state governments in the U.S., because these are approving the expenditure of money collected from American taxpayers to support the education of foreign graduate students.  It is not clear to me why these government offices award money to support foreign graduate students in science.  I have no doubt that many US taxpayers disapprove of any such use of their contributions.  Why don’t foreign governments pay for their students to come here for advanced education?

Who then should be blamed?  To determine that we must look back to find the primary cause of this entire situation.  It is very clear to me that the ultimate cause of this condition is the rejection of entering a career in science by current American college students.  In turn, that creates the gap in graduate school enrollments.  The numerous unfilled slots for training domestic graduate students in science then are filled by eager young foreign college-level students because Nature abhors a vacuum!  We must blame whatever is inducing American college students to reject a career in science.

Many undergraduates now choose not to enter graduate schools for advanced training in science.  Students indeed are clever, and many now in U.S. colleges are easily able to perceive some of the serious reasons why so many university science faculty are very upset with their current job condition.  That stems from the misguided policies of U.S. universities and the research grant system.  Hence, I believe that it is those 2 entities, (1) modern universities, and (2) agencies in the research grant system, which must be blamed for the secondary problems arising from there being so many new foreign graduate students studying and doing science in the U.S..

What is the best approach to solve this problem? 

Identification of the primary cause means that the best solution to this entire problem now is obvious: American students need to be much better attracted to enter a career in science.  The best way to accomplish that is to reform the several major job problems making many faculty scientists conducting research in U.S. universities being so distressed, dissatisfied, and dismayed (see:  “Why are University Scientists Increasingly Upset with their Job, Part I” , and also “Part II” ).  If science and universities in the U.S. can be repaired and renewed from their present degenerated and decayed condition (see:  “Could Science and Research Now be Dying?” ), then many college undergraduates in the US will no longer be so repulsed from entering a career in science.  In turn, with more domestic college graduates entering graduate schools to study science, there then will result in many fewer openings needing to be filled by foreign graduate students.

Concluding remarks for Parts I and II. 

The population of numerous foreign graduate students now immigrating into the U.S. has both positive and negative effects on American science.  Much more attention must be given to fully understanding all the different aspects of this modern situation.

Foreign graduate students studying in the U.S. for a doctoral degree in science now function very usefully to maintain ongoing university operations by substituting for the decreasing numbers of American students entering science studies.  Of course, these immigrants later compete directly with their domestic counterparts for science jobs in U.S. universities and industries.

The ultimate cause of the large increase in foreign graduate students moving into the U.S. to study for a Ph.D. in science is the decreasing number of U.S. undergraduates now choosing not to enter graduate school for starting a career in science.  The best and most effective solution to this problematic situation will be to make careers in scientific research much more attractive to young American college students.

 

[1]  Redden, E., 2013.  Foreign student dependence.  Article in Inside Higher Education is available on the internet at:  http://www.insidehighered.com/news/2013/07/12/new-report-shows-dependence-us-graduate-programs-foreign-students .

 

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                           UNDER THE WEBSITE TITLE

 

 

WHY DOES THE UNITED STATES NOW HAVE SO VERY MANY FOREIGN GRADUATE STUDENTS IN SCIENCE? PART I.

 

Why does the United States have sp many Foreign Graduate Students? (http://dr-monsrs.net)

Why does the United States now have so very many Foreign Graduate Students?? (http://dr-monsrs.net)

Modern science certainly is a very international activity.  The worldwide interactions of scientists, science educators, and science students produce many beneficial outcomes for everyone, but some recent aspects must be considered problematic.  Let’s now take a closer look at those.

Introduction. 

Many foreign students now are studying here at graduate schools to earn their Ph.D. in science.  They are following a very long global tradition in science and education.  Most of them are not able to get good research training for a science Ph.D. in their native land, so they undertake to do that in other countries having strong activity in scientific research, such as Australia, France, Germany, Italy, Japan, Spain, U.K., and the United States (U.S.).  Postdoctoral research associates also frequently come to these countries for advanced training in scientific research.  Through these educational programs, the U.S. or other host countries have been seen to substantially help other nations to expand and develop their own activities for science.  Previously, these foreign students and postdocs were either expected or required to return to their native land for subsequent employment. The young foreign scientists returning to their native country usually found good jobs at universities, research institutes, industries, or government; this arrangement helped the home countries greatly, and even has led some of them to set up scholarship programs to sponsor and facilitate such studies abroad.

Recent changes.   

The traditional situation with foreign graduate students in science recently has changed in the U.S.   There now is a general pattern that after young foreign graduate scientists earn their Ph.D. in science here, they then stay on for postdoctoral training and subsequently work in a good science job in the U.S. for the remainder of their life.  Currently, most foreign-born graduate students and postdocs now come here with little intention to ever return to their native country, except for vacations.  Instead, they aim to stay here and have access to more and better jobs, along with more and bigger research grants supporting their scientific investigations; both of these are not so available in their native country.  Many foreign students entering with some sort of student visa now openly are immigrants, since they strive to elevate their visa status or to change their citizenship very soon after arriving here.

In 2013, there were reported to be 71,418 foreign graduate students enrolled in U.S. graduate schools [1].  That represents a 10% increase in this population over the previous academic year [1].  Of course, not all of these graduate students are studying science, and some are only working for a Masters Degree.

Although there is no question at all that most of these science students and researchers from abroad work hard and do good work here, this modern change raises several disturbing questions.  I purposely will ignore some common complaints about foreigners not speaking English very well, and not understanding how to design good experiments, since those qualities vary greatly among the many different individuals.  Instead, I will deal here with important questions about whole populations (i.e., we will mostly be looking at forests, and not so much at individual trees); these important questions are not frequently discussed in terms of general trends.

Part I of this essay describes this new condition with numerous foreign science students immigrating into the U.S., examines its consequences, and discusses questions that are not asked openly.  Part II then will take a closer look at what this new situation could lead to, what it means for American science, what is its ultimate cause, and how this modern problem can best be resolved.  Readers should note that both Parts focus on graduate students, and not on undergraduate students.

What are the consequences of having so many foreign graduate students in the U.S.? 

The situation just described certainly has both good and bad consequences.  Most foreign graduate students are successful with their pre-doctoral research work, thereby helping their mentor, their host institution, and science in the U.S.  The large inflow of foreign graduate students into universities in the U.S. fills a vacuum created by the diminishing number of young Americans now choosing to study for a career in science; modern universities now have become very dependent upon the growing population of entering foreign graduate students to maintain their full enrollments.  The vigor of the grant-supported research enterprise in the U.S. strongly needs more foreign postdoctoral research associates, since the supply of new domestic Ph.D.s in science is not large enough for the demand; the research success of foreign postdocs greatly contributes to U.S. science, and prepares them for subsequent productive employment.  These immigrants later gain employment here, and many continue as successful professional researchers in universities and industries.  Some achieve such exemplary success with doing high quality innovative scientific research that they even very deservedly win a Nobel Prize (e.g., Prof. Ahmed H. Zewail (California Institute of Technology), Nobel Laureate in Chemistry (1999) [2]; also see: “Scientists Tell us About their Life and Work, Part 3, Subrahmanyan Chandrasekhar” ).

For science in the U.S., this modern situation is very positive since it increases both the number of practicing professional researchers and the total output of published research works.  In addition, it ensures full enrollments for most graduate schools in the U.S.  However, certain other consequences of this condition seem to be both negative and worrisome.  The effects of this situation upon native-born graduate students and holders of science faculty jobs in U.S. universities are quite controversial.  Discussions already have debated whether foreign-born graduate students crowd out and displace their native-born counterparts when seeking a postdoctoral position or a full-time science job.  In the future, the effects of the growing large immigrant population probably will become increasingly negative.  Since a greater number of foreigners now competes with their domestic counterparts for the same job openings, the foreign population of applicants thereby will have some advantage if all else is equal.  When applying for a faculty job opening in a university science department where there already are many foreign-born members of the science faculty, the new graduates from certain lands undoubtedly will be favored over those born in the U.S.  It also is likely that some American college students now are less enthusiastic about entering certain university graduate schools because they feel they would not fit in readily with all the foreign professors and foreign students there.

Questions that need to be discussed. 

Asking polite or impolite questions about the policies, problems, and peculiarities involving young foreign scientists in U.S. university graduate schools is made very difficult by 3 different factors.  (1) Faculty scientists at some very prestigious U.S. universities now openly visit certain other countries every year to recruit new graduate students; thus, this new system is being promoted and progressively locked into the status quo, just as has been done already for undergraduate students in colleges.  (2) Cheating on applications for admission to graduate schools, and during long-distance telephone interviews, not only occurs, but is well-accepted in some foreign cultures; this corruption is not always uncovered, and then increases the level of dishonesty within American science (see: “Why would Any Scientist ever Cheat?” ).  (3) Modern precepts for political correctness try to preclude any discussion of different characteristics for national origin and intelligence, such that any and all questions now are deemed to be very impolite and improper; I believe everything needs to be discussed more, and do not recognize any such restrictions.

The most important key questions about this entire situation can be phrased as follows.  Are young American students being denied participation in U.S. graduate schools and postdoctoral positions because the slots for admission already are filled by their foreign counterparts?  Are new American doctoral scientists being denied employment at universities because faculty job openings already are filled by newly-degreed and newly-hired young foreign scientists?  Are funds from US taxpayers collected and issued by the federal and state governments being used to support foreign graduate students and postdocs for their education and research training here?

I regret that I cannot answer the first 2 questions because there appears to be no adequate data or surveys with which to analyze all possibilities for this situation.  For the third question, I know that some private and public schools do provide financial support for graduate students in science, regardless of their national origin; it is likely that some or even all of these funds come from American taxpayers and donors.  That ongoing practice seems very questionable.

Why am I addressing these questions now? 

Many readers undoubtedly will jump to the conclusion that I must be very prejudiced against all foreigners and especially against young foreign scientists in training.  That just ain’t so!  Two of my own postdoctoral associates were born in foreign countries (Japan, and Italy).  They both worked hard and produced outstanding research work in my laboratory; it was very satisfying to see them succeed at research, and was fun to work with them.  Both returned to their native land to start professional employment with a new job opportunity in science.  My actual general prejudice always is to seek higher quality regardless of national origin or irrelevant individual characteristics.  Some foreign-born students and postdocs most certainly have a very high quality; since I know that some American students and young scientists also have a very high quality, I am looking at the questions given above only to make certain that the domestic young scientists are not being put at some disadvantage by this new situation.

I raise these questions because they are very important.  The large number of foreign graduate students now moving into the U.S. is rarely discussed, clearly is increasing, and needs to have its negative implications challenged.  If no questions are asked, then this situation will only expand to become more troubling.  The best place to start getting the negative effects of this situation analyzed will be in collecting numerical data for each branch of science in the entire U.S.; to the best of my knowledge adequate data are not yet available.  Nobody can hope to draw solid conclusions or recommendations until the  extent of this situation and its effects are much better known.

The cause, consequences, and best solution for this problematic new situation in U.S. science will be further examined in the forthcoming second portion of this essay.

 

[1]  Porter, C., and Belkin, D., 2013.  Record number of foreign students flocking to U.S.  Wall Street Journal article is available on the internet at:  http://www.wsj.com/articles/SB10001424052702304868404579190062164404756 .

[2]  Zewail, A., 2015.  Ahmed Zewail at a glance.  Available on the internet at:  http://www.zewail.caltech.edu .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                           UNDER THE WEBSITE TITLE

 

 

BASIC VERSUS APPLIED SCIENCE: ARE THERE ALTERNATIVES TO FUNDING BASIC RESEARCH BY GRANTS?

Both basic research and applied research need to be supported by grant awards! (http://dr-monsrs.net)

Two high school teachers discuss basic and applied research at universities!!             (http://dr-monsrs.net)

Basic science uses experimental research to seek new truths and test hypotheses.  Applied science seeks to improve or invent devices, methods, or processes so they have better output (e.g., faster or slower, lighter, more efficient, less expensive, more durable, etc.). Research in basic and applied science at universities both need to be supported by external research grants.  At present, the large federal granting agencies increasingly seem to favor making awards for projects with applied research; awards to acquire knowledge for its own sake in basic research studies now are not considered as worthwhile for funding as formerly.

What good is pure basic research? 

The classical work of the great pioneers in science, ranging from Galileo to Linus Pauling, all was pure basic science.  Nevertheless, research studies in modern basic science typically are seen as ridiculous or worthless by ordinary adults (e.g., What happens if entire chloroplasts isolated from plant cells are inserted into living animal cells?).  This viewpoint is very short-sighted because it ignores the simple fact that all research progress is part of a continuum of investigations by many different scientists.  Almost all new devices or items of practical use follow this general pathway of development; the final output of applied research can occur several decades after the original discovery by basic research.  Thus, esoteric new knowledge from basic science studies often becomes useful and important when it generates later research in applied science and engineering.

The basis for all later developments in applied science is the open research in basic science. The number one example of this is the transistor.  When transistors were first made by Bardeen and others, they were viewed as “lab curiosities” that had no potential for practical usage [1].  No-one foresaw their eventual revolutionary significance for the myriad electronic devices and computers in today’s  world.

How is it decided what research actually is conducted? 

In an ideal world, professional scientists with a Ph.D. decide what to investigate and how to carry out the needed experiments.  In the present world, faculty scientists at universities investigate only what can be supported by external research grant awards.  This necessity  influences and restricts university scientists right from their first job since applicants for a new research grant always very carefully inspect published announcements stating which topics and areas are currently being targeted by the governmental funding agencies; these agencies thereby have a very large influence on which research studies can be pursued.  Governmental officials at agencies awarding research grants can silently direct research efforts into chosen directions, and ensure that certain research topics receive more attention by university research scientists.  An analogous direction of work occurs for most industrial researchers, since they must work only on those research questions having significance for their commercial employer.

The governmental control of funding for research investigations in science is problematic since the funding agencies increasingly seem to favor funding of research projects in applied science.  This is due in part to the understandable desire to obtain progress within their area of special interest (e.g., energy, fuels, health, military, etc.), and to show the tax-paying public that their support for research studies produces useful new devices or new processes with practical benefits to many.  The funding agencies unfortunately do not understand that basic studies almost always are the precursors for later developments by applied scientists and engineers.  Thus, these funding agencies have an inherent conflictbetween providing funding for the basic or applied categories of research. Decreasing the awards for basic science later will cause decreases in the output of applied science.

What are the consequences of favored funding for applied science? 

Any favoring of applied science over basic science for receiving external funding awards inevitably has negative consequences on the progress of science.  First, it decreases the amount of research funds available to support pure basic research.  Second, it conflicts with the well-known fact that almost all important advances and engineering developments originate from some earlier finding(s) by pure basic researchers; decreased funding for basic research later will cause fewer results with applied research.  Third, all the research subjects not selected for targeted funding in applied science thereby are disfavored, and these consequently become less studied.  Fourth, the origin for most new ideas, new concepts, breakthrough developments, and new directions in science is the individual research scientist (see earlier discussions on “Individual Work versus Group Efforts in Scientific Research” and “Curiosity, Creativity, Inventiveness, and Individualism in Science” ).  Applied research tends to decrease the freedom to be creative; that also encourages formation of research groups and decreases the number of grant-holding scientists functioning as individual research workers.

Are there alternatives in funding or support mechanisms for basic science?

Very small short-term research studies often can be supported by either personal funds orcrowdfunding (see earlier discussion in: “Other Jobs for Scientists, Part III.  Unconventional Approaches to Find or Create Employment Opportunities” ).  Some granting agencies have programs offering small amounts of financial support for one year of work; these special opportunities are particularly valuable for scientists seeking to conduct pilot studies.  Where larger research expenses are needed, those mechanisms for support of small research are insufficient, and it is necessary to obtain a standard research grant from the external support agencies.  For subsequent investigations, most grant-holding scientists at universities choose to apply for renewal of their current award; once on the train, it seems easier to stay on board instead of trying to jump off to transfer onto a different train!

It is not always recognized that a few organizations offer substantial cash prizes for certain targeted competitions (e.g., design a safe human-powered aircraft, develop an efficient system for producing bulk proteins from single-celled algae at special indoor or outdoor farms, construct a practical and inexpensive all-electric gasoline-free automobile, etc.).  Such projects are strongly involved with applied research, although they do involve whatever materials and directions the scientist-inventor wishes to utilize.  These special competitive prizes are retrospective awards given after the research studies and engineering developments are finished; that is totally the opposite of standard governmental research grants which give prospective awards for planned research workbefore it has been conducted.

Retrospective research grant awards also are found in ongoing support programs of some other countries, but are not usual in the USA.  Those countries support their research scientists at universities and institutes by routinely awarding them general operating funds (e.g., $30,000/year); these funds provide support for such needed expenses as the work of graduate students, purchase of research supplies, unanticipated research costs (e.g., repair of a broken lab instrument), travel to a science meeting or to the lab of a collaborator, etc.  This supportive practice is a lifesaver whenever an active scientist’s research grant is not renewed.

Support for basic research inside the current federal research grant system

The diminishing support for basic research necessitates looking for alternative funding sources.  It is not always recognized that normal federal research grants do allow some awarded funds to be utilized for new basic science investigations, so long as these have some relationship to the main subject of interest and do not require very large amounts of money.  This usage of research grant funds usually is considered as a justified expense when the Principal Investigator approves these expenditures.  Such side-projects often are labelled as being pilot studies, since they can produce enough important data to later be included in an application for a new separate research grant.

Concluding remarks

Support by the research grant system for basic research studies now is decreasing while  support for applied research studies increases.  Knowledge for its own sake always will be important, and is the basis for subsequent developments in applied science and engineering.  Both the basic and applied types of research studies are valuable for the science enterprise and society.  The current disfavoring of basic research studies should be stopped, because that hurts the future promise of research studies in both basic and applied science; at present, basic science needs to be encouraged more.    University scientists must develop and use additional or unconventional means to enable them to conduct the needed basic science investigations.

[1]  Mullis, K. B., 1987.  Conversation with John Bardeen.  Available on the internet at:      http://www.karymullis.com/pdf/interview-jbardeen.pdf .

 

 

 GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                           UNDER THE WEBSITE TITLE

 

 

November 14, 2014: SPECIAL NOTICE TO ALL FROM DR.M !

 

No More Spam!November 14, 2014: No More Comments  Means No More Spam!  (http://dr-monsrs.net)

 

My website now has been active for one year!  It is pleasing to note that there have been over 10,000 visitors, and that number still goes up at an increasing rate every week.  I hope that all visitors have found something here that is either new, unusual, disconcerting, surprising, provocative, important, or interesting.  There is a lot more to come!

I have received over 30,000 comments, but at least 99% obviously are spam.  There are always many dozens of identical and very similar comments every single day, coming from several different continents and many different countries; since some messages arrrive within seconds of their duplicates from other addresses, this sounds like a botnet to me.

To solve this problem, I AM HEREBY DISCONTINUING ALL FURTHER COMMENTS.  I do regret the necessity for doing this, but I have no other choice.

 

                                                                                                      Dr.M

 

DOES THE USA REALLY NEED SO MANY NEW SCIENCE PH.D.’s?

 

Are There Too Many New Ph.D.'s in Science Being Produced? (http://dr-monsrs.net)

Are There Too Many New Ph.D.’s in Science Being Produced?   (http://dr-monsrs.net)

In 2011-12, there were about 67,200 new doctoral degree’s awarded by universities in the USA [1].  Many of these are for studies in science, medicine, and engineering.  In addition, there are numerous new foreign Ph.D.’s in science who come here to work on research.  After finally getting an academic job, all new faculty scientists immediately seek to attract as many graduate students as possible to work in their new laboratory.  This ongoing scenario thus is a Malthusian progression in the number of new doctoral scientists.

This dynamic immediately runs headlong into the several difficult practical problems involving imbalances of supply and demand.  At the top of the list, there is not enough money available to support all the new research projects proposed by the ever-growing number of new research scientists in academia.  This same shortage of funding actually impacts on all faculty scientists, whether new or senior.  The end result is that this money problem gets worse every year (see earlier article on “Introduction to Money in Modern Scientific Research”).  Another large practical problem, the limited number of open science faculty positions in universities, also is made worse by the enlarging number of new doctoral scientists.

I have never heard of any official or unofficial discussions about the wisdom of constantly generating more and more new doctoral scientists than can be supported adequately by the pool of available tax-based research grant funds.  In this essay, I will (1) describe the causes and consequences of increasing the number of new science Ph.D.’s, (2) explain how this is bad for science, and (3) then will lay out my view of what could be done to stop this ongoing problem, and discuss why nothing can be changed now.

Causes of this Malthusian problem 

One must look closely at the never discussed reasons why this peculiar ongoing generation of more and more new science Ph.D.’s remains in operation, in order to recognize the actual causes of this problematic situation.  The ultimate causes are the practices of universities.  The graduate schools at universities had been under financial stress for several decades, and so sought to maximize their inflow from tuition payments by enlarging their enrollments.  Since tuition can only be increased so much, the tactic utilized is to raise the number of enrollees paying tuition.  This fits in nicely with nature of modern universities as businesses where money is everything (see earlier essay on “What is the Very Biggest Problem for Science Today?”).

Consequences of this Malthusian problem 

The direct consequences of the yearly production of more and more new science Ph.D.’s now are apparent, and indicate that these are having bad effects on science.  The expanding enrollment in university graduate schools means that their standards for admission will continue to get lowered; to increase enrollments they must accept and later graduate more students regardless of their deficient qualifications.  I myself have observed 2 graduate students utterly undeserving of a Ph.D. be awarded that hallmark of advanced education; one of them even had a crying spell in the midst of the oral presentation for her thesis defense.  Modern university graduate schools feel they must do everything and anything to further increase their enrollment and awarding of degrees in order to help deal with the current financial realities.  Pressures to further “modernize” standards for the doctoral degree will increase as the graduate student population continues to be enlarged.  In addition, more teaching responsibilities will be shifted onto graduate students.  The science faculty usually are reluctant to work in the very large introductory courses, and are happy to be able to reduce their teaching load.  The consequences of this problem for university education are obvious.

As the number of unfunded or partially funded academic scientists grows larger every year, federal research granting agencies will need to obtain increased appropriations from the Congress.  Generally, this means increased taxation.  These agencies additionally will need to increase the size of their support programs for graduate education in science, thereby making the problem with finding support for research activities even worse.  Both these needs add to the current negative impact of this Malthusian problem on science.

Are graduate students or scientists to blame for this ongoing problem? 

We must note that the graduate students working to earn a Ph.D. in science are innocently entering a career path that is their choice.  They mostly are unaware of being used as cash cows in a business, and so are blameless for the resultant problems.  Faculty scientists become trapped within the university system for getting promoted and tenured.  Foreign students and scientists will continue to move here despite whatever difficulties they encounter since the situations hindering and restricting the conduct of scientific research in their own countries are much greater than exist here.  They cannot be blamed for making this choice.  The important contributions of foreign professional researchers to the science enterprise in the USA are very widely recognized to be substantial.  Blame for the Malthusian problem lies mainly with the universities.

What will result for science if the number of new science Ph.D.’s is decreased? 

Directly, a reduced number of new Ph.D.’s in science will significantly decrease the number of applicants for new research grants.  That result is equivalent to providing more tax-based dollars to support research investigations, and will be obtained miraculously without any increase in tax rates.

The ultimate results for science of stopping the problematic Malthusian progression will be dramatic, and will include several very good secondary effects.  (1) The quality of the new incoming graduate students will be raised, since there will result a more rigorous selection of the capabilities and aptitude of applicants for admission into graduate training programs.  (2) In turn, the better graduate students should lead to a general increase in the quality of scientists and of science.  (3) The enlarged pool of funds available for research support will enable more good proposals and more scientists to be fully funded than is the case at present.  These several positive effects will combine to produce an important derivative benefit: a general increase in the quality of scientific research.

How could this Malthusian cycle be stopped?

In theory, a single step could solve this problem!    A reduction in enrollments of new graduate student candidates into Ph.D. programs will stop this Malthusian progression, since that will decrease the output of new science Ph.D.’s!

As one example of how this theoretical solution can be accomplished at graduate schools, each science training program currently accepting 20 new students every year will have a 10% reduction, so that only 18 new students will be accepted for the next (second) year.  In the following (third) year, another 10% decrease will occur, so only 16 new students will be enrolled.  These annual decreases will continue for at least 5 years, until the number of new students enrolling reaches a level of 50-60% of the original figure; this cutback will produce a corresponding decrease in the number of new doctoral degrees awarded.  Use of incremental progressive decreases, rather than trying to do everything all at once, will prevent large disruptive effects and will allow sufficient time for each graduate school to make the needed adjustments to the new system. The graduate students already enrolled will simply continue their course of advanced education just as at present.

This change in size of enrollments in each program must be made for the total number of graduate students, since otherwise the present widespread practice will continue with accepting foreign applicants to officially or unofficially fill the absent places scheduled for occupancy by USA students.  Thus, the 10% annual decreases in enrollment must apply to the total number of all students enrolled, and not just to those from the USA.

Can this proposed cure for the Malthusian cycle actually be installed? 

The answer to this question seems to me to be “Never!”.  Universities as businesses always are happy to obtain more profits, and so will never agree to decrease their number of new Ph.D.’s being  graduated.  In principle, the federal granting agencies could mandate such decreases based upon their provision of research grants and education grants to many universities.  From what I have seen, these agencies like their growing budgets and increasing influence, and so are very unlikely to ever change their present operations.  Thus, I am forced to view the problem of too many new science Ph.D.’s as being unsolvable.

Concluding remarks

The answer to the question proposed in the title clearly is “No!”.  Dr. M considers it to be both sheer insanity and very wasteful to ordain more new doctoral research scientists than can be supported adequately during their subsequent careers in academia.  The number of new Ph.D.’s in science .should be balanced with the amount of financial support for research.  It now seems to be badly imbalanced.  The current production of too many new Ph.D.’s is bad for graduate students, bad for science, and bad for research.  It is time to put an end to this idiocy!  Unfortunately, there appears to be no way at present to prevent this problem from continuing and becoming even worse.

Dr.M welcomes questions about this essay and other opinions about this controversial question, via the Comments!

[1]  Council on Graduate Schools, 2013.  U. S. graduate schools report slight growth in new students for Fall 2012.  Available on the internet at:
http://www.cgsnet.org/us-graduate-schools-report-slight-growth-new-students-fall-2012 .

 

 GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                            UNDER THE WEBSITE TITLE

 

 

WHY ARE UNIVERSITY SCIENTISTS INCREASINGLY UPSET WITH THEIR JOB? PART II.

 

Why is quality researching and teaching now so problematic for university scientists? (http://dr-monsrs.net)

Why is quality researching and teaching now so problematic for university scientists? (http://dr-monsrs.net)

 

Part I of this essay identifies the chief causes and consequences for the increasing dismay and dissatisfaction of scientists working in universities for researching and/or teaching (see “Why are University Scientists Increasingly Upset with their Job?  Part I”).  Part II now discusses the effects of this condition upon the conduct of experimental research and science education in universities; further, I explain what can be done to deal with this current issue.

What do the changes in Part I mean for scientific research and science teaching in universities? 

The whole nature of science and research at universities recently has changed.  The altered and decreased standards for quality performance in research and teaching means that a decline is inevitable in both activities.  Rather than being a university scientist, members of the science faculty now are forced to become businessmen and businesswomen.  Instead of working at the laboratory bench, far too many successful university scientists become managers doing paperwork while sitting at a desk in an office, but never entering their laboratory.  Acquisition of more and more research grant dollars now is their chief goal, instead of trying to discover more new truths and create valid new concepts through research experiments.

When doctoral research scientists become transformed into business managers, they are then expected to perform activities that all their many years of advanced education and training have not prepared them for (e.g., acquiring money, adjusting experimental data to fit what is wanted, bargaining, composing research grant proposals based only on what is most likely to be funded, handling investments and charting profit margins, interacting with other scientists only as either competitors or collaborators, etc.).  I know of no evidence that being good or clever at making money in business is more than very loosely related to being good or clever at doing research experiments; these two sets of skills and capabilities seem to me to be separate and unrelated.

Science and scientists at universities have been modified to such an extent that activities, performance, and advancement now are being evaluated with very different criteria than were used only a few decades ago.   Even science education is negatively affected, because quality standards for teaching are lowered, students are not taught to think independently and to ask meaningful questions, the development of understanding by students is not fostered, etc.; often, all of these are decreased or even negated.  University scientists concentrating on teaching activities now are evaluated mainly on the basis of their popularity with students, instead of being evaluated for educational quality.  I will never forget the time I was very shocked when a senior faculty teacher once confided to me that he believed his own required first-year medical school course had degenerated into something suitable for high school students.

The overall effect of the enlarging dissatisfaction by science faculty is a progressive decrease in the quality of both researching and teaching.  The activities of professional scientists at universities now are degraded due to the changes and consequences enumerated in Part I (see “Why are University Scientists Increasingly Upset with their Job?  Part I”).

Can university research and science teaching be rescued? 

What should be done to resolve the current predicament of university scientists?  Finding effective solutions for these vexing academic problems certainly is not easy, particularly because academia historically always has been very slow to change anything even when it is totally obvious that changes are badly needed.  Possible solutions could be sought either by (1) rectifying the general policies and practices at modern universities, or by (2) improving the individual situation for each  disgruntled and demoralized scientist.  Since I regretfully do not see how the first possibility can be accomplished at the present time, I will consider here only the second possibility.

Why do I feel that university policies and practices cannot be reformed now?  Universities generally are very happy with exactly the same changes that upset their science faculty, since those maneuvers have significantly elevated the financial position of these institutions (see “Three Money Cycles Support Scientific Research”).  Any large and comprehensive solution for the problems in academia probably must await strong reform measures that can replace the ongoing commercialization of doing research in universities with some modern version of its traditional aims of finding new truth, creating valid new concepts, and, developing new ideas and new technology.  Similarly, in all levels of teaching science in universities, changes that can improve the present decayed educational system seem unlikely until there will be removal of such unrealistic philosophies as “truth is relative”, “all children are equal”, “education should be made easier, so students can learn quicker”, and, “that’s good enough”.  In my view, all such anti-education liberal proclamations really are only excuses for failure to do effective teaching.

What can actually be done to improve job satisfaction for individual faculty scientists? 

My suggestions here are directed towards practical considerations.  Because I believe that the policies for scientific research in universities are very unlikely to be changed or improved for a long time, I suggest that the best approach for individuals is to move out of the way of whatever causes their dissatisfaction.  This entails evaluating the nature of their problematic situation and the amount of change they believe is needed.  Many will find that this ultimately boils down to asking oneself whether it is time to find a better place to work.  I do indeed know personally that this is never an easy question, and that moving usually is very disruptive for the career of any academic scientist.  However, it should be recognized by all the upset university scientists that there now are an increasing number of good employment opportunities for scientists that are quite different from working in traditional roles at universities.  One now can conduct research experiments at the laboratory bench outside universities, or can perform science-related work completely outside research laboratories.  I already have discussed a number of these non-traditional opportunities in recent articles primarily aimed to inform graduate students and Postdocs (see “Other Jobs for Scientists, Parts I, II, and III”).

Dissatisfied university scientists who remain very enthusiastic about continuing to do lab research should seriously look at what is available in industrial research and development centers, and in government laboratories.  Much valuable information about these possibilities can be obtained by directly talking to doctoral scientists now working in these other environments, and personally asking them what they see as being serious local job problems.

Dissatisfied science faculty who still are very committed and enthusiastic about continuing to teach science should try to find a new employer, either at other universities or at non-university sites, where their viewpoints about what constitutes excellent education are shared with the other teachers and are actually put into practice (i.e., lip-service is not enough!).  With the recent development of digital education outlets, educational video programs, non-university course offerings, personal education coaches, private educational organizations, etc., there now are an increasing variety and number of employment opportunities for good science teachers to do new things.

Concluding Remarks for Part II

The increasing levels of job dissatisfaction amongst university faculty researchers and science teachers stem from the recent large shifts in (1) professional identity, (2) job aims and duties, (3) standards for job performance evaluations, (4) career expectations, and, (5) commercialization of academic research and teaching.  These modern changes largely run against what most practicing academic scientists were taught in graduate school, and directly give rise to increasing levels of job frustration and dismay.  The main message here is that these changes also act to decrease the quality of both scientific research and science teaching.  It is nationally important that good solutions to this quagmire must be developed.  It is up to each individual scientist to find a good environment for doing quality research and quality teaching.  The increased variety of job opportunities now available for scientists make non-traditional solutions to this important problem a realistic possibility.

Conclusions for Both Parts I and II

University scientists are increasingly upset with their job due to wholesale changes in many different aspects of researching and teaching.  Science at universities now is being degraded, and the professional roles of faculty scientists increasingly are distorted.  This problem is not some isolated small esoteric issue, but rather involves the purpose of science and research, and, the objective of becoming a doctoral scientist.  These very destructive changes in universities constitute a large portion of the reasons why I have come to believe that science itself now is dying (see my recent article in the Big Problems category on “Could Science and Research now be Dying?”).

 

 GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                         UNDER THE WEBSITE TITLE

 

 

WHY ARE UNIVERSITY SCIENTISTS INCREASINGLY UPSET WITH THEIR JOB? PART I.

 

Why is quality researching and teaching so problematic for university scientists? (dr-monsrs.net)

Why is quality researching and teaching now so problematic for university scientists? (http://dr-monsrs.net)

 

The traditional work for doctoral scientists employed as faculty at universities is laboratory research and classroom teaching.  All that now has changed greatly.  Readers who are not scientists should first learn about the actual job activities of university scientists (see “What do University Scientists Really do in their Daily Work?”); that will greatly aid in understanding this essay.  A surprising number of faculty scientists performing research studies now find that they are frustrated, dismayed, and increasingly dissatisfied with their job activities.  Even senior scientists mostly working in classroom teaching now feel that they get less and less professional satisfaction for trying to do a good job with science education in undergraduate, graduate, and medical school courses.

My examination of this growing problem in modern universities is divided into 2 parts.  The first presents the causes of why the science faculty are so upset, and examines the unfortunate consequences.  The second part will detail how these recent changes impact on science and scientists, and discusses what can be done to alleviate this distressing condition for university scientists.

What is causing job dissatisfaction amongst university scientists? 

From my own experiences during over 35 years of faculty work at several universities, and from talking to many different faculty members at other academic institutions, I know that many university scientists feel that they now are not readily able to do research as they were trained to do.  Their identity as scientists is constantly challenged by the changed job goals, hyper-competition for research grants that takes them away from the lab bench, and, pressures to accept or ignore professional dishonesty.  They also unexpectedly find that they have been incompletely educated, since their graduate courses and long training included no formal instruction on how to be successful as a business executive, financial jockey, administrative manager, and salesperson, while still officially being a professional scientist at work on researching and teaching.  Accordingly, their daily life as modern university faculty gets to be quite problematic (see earlier articles on “The Life of Modern Scientists is an Endless Series of Deadlines” and “Why is the Daily Life of Modern University Scientists so very Hectic?”).

There are 5 chief causes for this unfortunate dissatisfaction in academic science

(1) Traditional evaluation of quality performance in research has been replaced by counting dollars acquired from research grants.  This changes the entire nature of university research.

(2) Traditional evaluation of quality performance in teaching now has been replaced by measuring popularity of teachers and courses with the enrolled students .  This changes the entire nature of university teaching.

(3) Doing significant experimental research has only a strictly secondary importance since the main job of the science faculty now is to increase the financial profits of their university employer (see  “What is the New Main Job of Faculty Scientists Today?”).  This changes the very nature of being a science faculty member at modern universities.

(4) Science faculty members doing grant-suppported research are only renting their laboratory.  Unless they win a Nobel Prize there are no long-term leases of research laboratories, even for tenured professors.  This necessarily changes the nature of anyone’s career as a university research scientist.

(5) Individual curiosity, creativity, and interests are increasingly submerged into mechanical types of research activities requiring little individual initiative or self-determination, particularly when doctoral researchers come to work as technicians inside large groups (see my recent article on “Individual Work Versus Group Efforts in  Scientific Research”).  Research groups commonly involve research managers, group-think in tightly knit team projects, and daily attention to financial targets for research grant awards.  This changes the nature of any research career at universities.

Although these causes and their resulting consequences seem very obvious to me, readers should be aware that they are disputed or even denied by academic officials and some other scientists.  It is my belief that the present decrease in the quality of research and science teaching that results from faculty dissatisfaction is a serious national problem that someday will become very obvious for all to see.

What are the consequences for university scientists? 

Let us briefly look at the main consequences coming from each of the 5 major causes for current faculty dissatisfaction listed above.

(1)  Making research at universities into a business activity brings all kinds of secondary problems from the world of modern commerce into research laboratories (e.g., corruption, deceit, graft, greed, mercantilism, vicious competition, etc.).  These necessarily decrease science integrity (see my earlier article on “Why Would Any Scientist Ever Cheat?”), and thereby subvert trust in research, science, and scientists.

(2)  When popularity with students becomes the goal of science courses in universities, then teachers start bringing pizza and bowls of punch into the classroom in order to raise their chances for winning a “teacher of the year” award.  Concomitantly, standards are lowered or discarded as education becomes sidetracked from its true purpose.  Popularity and excellence in teaching simply are not synonymous (see my recent article on “A Large Problem in Science Education: Memorization is not Enough, and is Not the Same as Understanding”.

(3)  If finding new truths is no longer the chief aim of scientific research then the standards for evaluating what is true will change and decay (see “How do we Know What is  True?”).  Dollars cannot be any valid measure of what is true.

(4)  Sooner or later, all science faculty researching in university laboratories will encounter the problem of not getting an application for research grant renewal approved and funded.  Even when they have previously merited several grant renewals, such a rejection means that they soon are pushed out of their laboratory.  University labs are only leased, and all space assignments therefore are temporary; if the rent is not paid by a research grant, then occupancy ends.  This necessarily means that laboratory research at universities must be only some temporary work, rather than an ongoing career activity.

(5)  Working as a businessperson, chief manager, executive officer, financial administrator, research director, etc., is very different from being a professional researcher and/or teacher at a university.  The mentality, integrity, and accountability in these two sorts of employment are very different.  Universities formerly have valued and encouraged creativity, curiosity, debate, and individualism much more than these are utilized or accepted in businesses where money determines everything (see article on “Introduction to Money in Modern Scientific Research”).  These qualities now have been changed into requirements for conformity to executive authority, group-think, subordination of curiosity and creativity, and, willingness to never ever ask any questions.

Concluding Remarks for Part I

The chief causes and consequences of the growing dissatisfaction of university science faculty with their job now can be clearly recognized. Universities believe this entire situation is wonderful  because their financial situation now is much improved.  The end results of putting up with these unannounced changes are that members of the science faculty are sidetracked from traditional research, forced to work at activities they have not been trained to do, spend most of their time working on research grant applications, and, are involved in a business career rather than in science.  Scientific research in academia now has become increasingly commercialized (see my earlier essay on “What is the Very Biggest Problem for Science?”).  Most science faculty become very surprised with how different their daily life actually is from what they had expected in graduate school.  It is hard to conclude anything more striking from this essay than that science itself has been changed.

In summary, science faculty working at modern universities on research and/or teaching are increasingly frustrated and upset because their planned career is diverted, their integrity is challenged, their curiosity and creativity are squelched, their research is sidetracked into business aims, and their long education is made to seem quite incomplete.  No wonder they are so upset!!  Part II will discuss the effects these changes have upon researching and teaching, and, will give my views about what realistically can be done to deal with this modern academic problem.

 GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                          UNDER THE WEBSITE TITLE

  

COULD SCIENCE AND RESEARCH NOW BE DYING?

They Just Don't Realize What Will Happen if Science Dies!! (http://dr-monsrs.net)

They Just Don’t Realize What Happens if Science Dies!!   (http://dr-monsrs.net)

Several knowledgeable science writers have published provocative and shocking speculations that science and research are dead [e.g., 1-3].  I myself do not believe that science now is dead, because new knowledge and important new technology continue to be produced by the ever-increasing large number of graduate students, postdocs, academic and industrial researchers, and engineers.  A very good example of recent major progress is found in “3-D printing and nanoprinting” [e.g., 4,5]; this remarkable advance developed from a combination of pure basic research, applied research, and engineering developments, and exemplifies to me that science and research indeed still are alive today.

Other science writers have concluded that science is undergoing decay and degeneration despite its celebrated progress [e.g., 6,7].  I agree with these perceptions.  The nature and goals of modern scientific research at universities have changed so much that I am sadly convinced that modern science is withering from its former vigorous state.  Since there presently is almost no push against the causes of this very undesirable situation, and since there are no easy means to accomplish all the reforms and rescue efforts needed to reverse the current very negative trends, I do indeed believe that modern science actually could be dying.  Although science still is quite alive, to me it obviously is not well.

Many who disagree with my harsh conclusion will point to the enormous number of scientists now doing research studies, the massive number of tax dollars being spent on academic research, the even larger amount of dollars spent by industries for their commercial research and developmental efforts, the huge number of research scientists reporting on their latest experimental findings at the annual meetings of science societies, and, the modern advent of new research centers, new subdivisions of science, and new directions of research.  Instead of responding to each of these true statements, I will counter that most of them are not reasons why science is successful, but rather are actual symptoms resulting from the decay and degeneration of modern science.

All of the following are strictly personal opinions, and represent my reasons for believing that science now is dying.  The fundamental goal of scientific research at universities has changed into acquiring more research grant money, instead of finding more new knowledge.  Today, science seems to be progressing more and more slowly, with research advances coming in smaller and smaller steps.  The research questions being addressed almost all are smaller than those asked by scientists just a few decades ago; very many scientists in academia now seek to work only on niche studies.  The significance of the reports found in the numerous new and old research journals is decreasing with each year; superficial rather limited reports now are becoming commonplace.  Few scientists are enthusiastic about undertaking the experimental study of any really large and important research questions, since those would require at least several decades of work to find a complete answer; such efforts  are made impossible by the fact that research grants mostly are available only for 1-5 years of effort.  Many modern PhD scientists working in universities today are functioning only as highly educated research technicians working within large groups (see my recent article in the Essays category on “Individual Work versus Group Efforts in Scientific Research“); group-think is prevalent and research in academia now is only a business activity (see my earlier article in the Essays category on “What is the Very Biggest Problem for Science Today?”).  The extensive commercialization of university science sidetracks basic research, stifles individual creativity, and encourages ethical misconduct.  Individual scientists still are the fountain for new ideas and research creativity, but in modern academia they are increasingly restrained by the misguided policies of the research grant agencies and the university employers; both of these have only a very restrained enthusiasm for basic research studies.

A different large and important question always is lurking in the background whenever the status of science progress is being evaluated: could it be that much of the totality of possible knowledge already has been established by all the previous research discoveries?  In other words, is modern scientific research only working to fill in gaps within the massive amount of knowledge already acquired?  I feel that this proposal is quite debatable, since there still are many large and important research questions that remain unanswered.  However, if one switches to asking about understanding, rather than about knowledge, then I believe that very much understanding remains remains to be uncovered in all branches of science.  Although many more new facts and figures will lead to some increase in understanding, I do not actually see that outcome resulting from the many superficial research studies today; many new experimental results are publicized and certified as being “very promising”, but these often simply increase the complexity of the question and  rarely result in significant advances for real understanding.

All of these negative situations adversely impact upon the research enterprise and make it less productive, less significant, less satisfying, and more costly.  Unless changes and reforms are made, the decay in scientific research will progress further.  I feel that therapeutic interventions must be made in order to save science and research from actually dying.  The time to start these needed changes is right now, before everything gets even worse.  My hope is that more and more research scientists, science historians, science philosophers, science teachers, and science administrators will come to see the truth in my viewpoint that the research enterprise currently has decayed and is approaching a morbid condition.

Can science and research be saved from death?  What changes must be made?  Which change needs to be made first?  Is more money to support science needed to rescue science, or will more supportive funds only make this pathological situation even worse?  Who can make the needed changes and reforms?  Who will take the lead in these efforts? How can more scientists and more ordinary people be persuaded that scientific research is dying and needs to be rescued?  I will try to deal further with some of these very difficult and complex questions in later essays at this website.

 

[1]  Horgan, J., 1997.  The End of Science.  Facing the Limits of Knowledge in Light of the Scientific Age.  Broadway Books, The Crown Publishing Group, New York, 322 pages.

[2]  Staff of The Gleaner, 2011.  Is science dying?  The Gleaner, Commentary, February 28, 2011.  Available on the internet at:  http://gleaner.rutgers.edu/2011/02/28/is-science-dying/ .

[3]  LeFanu, J., 2010.  Science’s dead end.  Prospect Magazine, July 21, 2010.  Available on the internet at:  http://www.prospectmagazine.co.uk/magazine/sciences-dead-end/ .

[4]  Aigner, F., & Technische Universität Wien, 2012.  3D printer with nano-precision.  Available on the internet at: http://www.tuwien.ac.at/en/news/news_detail/article/7444/ .

[5]  3dprinterworld, 2014.  News.  Available on the internet at:  http://www.3dprinterworld.com/news  .

[6]  Hubbert, M.K., 1963.  Are we retrogressing in science?  Despite superficial evidence to the contrary, science in the United States is in a state of confusion.  Science, 139:884-890.  Abstract available on the internet at:  http://www.sciencemag.org/content/139/3558/884.abstract . [7]  Phys-Org, March 27, 2012.  Has modern science become dysfunctional?  Available on the internet at:  http://phys.org/news/2012-03-modern-science-dysfunctional.html .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                          UNDER THE WEBSITE TITLE

 

 

ALL ABOUT TODAY’S HYPER-COMPETITION FOR RESEARCH GRANTS

 

Hyper-Competition for Research Grants Stimulates the Decay of Science! (http://dr-monsrs.net)

Hyper-Competition for Research Grants Causes Science to Decay!(http://dr-monsrs.net)

Today, the effort to acquire more research grant funding is first and foremost for university science faculty.  This daily struggle goes way beyond the normal useful level of competition, and thus must be termed a hyper-competition.  Hyper-competition is vicious because: (1) every research scientist competes against every other scientist for grant funding, (2) an increasing number of academic scientists now are trying to acquire a second or third research grant, (3) absolutely everything in an academic science career now depends upon success in getting a research grant and having that renewed, (4) the multiple penalties for not getting a grant renewal (i.e., loss of laboratory, loss of lab staff, additional teaching assignments, decreased salary, reduced reputation, inability to gain tenured status) often are enough to either kill or greatly change a science faculty career in universities, and, (5) this activity today takes up more time for each faculty scientist than is used to actually work on experiments in their laboratory.

This system of hyper-competition for research grant awards commonly causes destructive effects.  I previously have touched on some aspects of hyper-competition within previous articles.  In this essay, I try to bring together all parts of this infernal problem so that everyone will be able to clearly perceive its causation and its bad consequences for science, research, and scientists.

How did the hyper-competition for research grants get started? 

Hyper-competition first grew and increased as a successful response to the declining inflow of money into universities during recent decades (see my recent article in the Money&Grants category on “Three Money Cycles Support Scientific Research”).  The governmental agencies offering grants to support scientific research projects always have tried to encourage participation by more scientists in their support programs, and so were happy to see the resultant increase in the number of applications develop.  Hyper-competition continues to grow today from the misguided policies of both universities and the several different federal granting agencies.

Who likes this hyper-competition for research grants?

            Universities certainly love hyper-competition because this provides them with more profits.  They encourage and try to facilitate its operation in order to obtain even greater profits from their business.  Additionally, universities now measure their own level of academic success by counting the size of external research funding received via their employed science faculty.

            Federal research grant agencies like this hyper-competition because it increases their regulatory power, facilitates their ability to influence or determine the direction of research, and enhances their importance in science.

            Faculty scientists are drawn into this hyper-competition as soon as they find an academic job and receive an initial research grant award.  They then are trapped within this system, because their whole subsequent career depends on continued success with getting research grant(s) renewed.  Although funded scientists certainly like having research grant(s) and working on experimental research, I know that many university scientists privately are very critical of this problematic situation.

What is causing increases in the level of hyper-competition?

             The hyper-competition for research grants, and the resulting great pressure on university scientists, are increased by all of the following activities and conditions.

(1)  The number of applications rises due to several different situations: more new Ph.D.s are graduated every year; many foreign doctoral scientists immigrate to the USA each year to pursue their research career here; universities encourage their successful science faculty to acquire multiple grant awards; the faculty are eager to get several research grant awards in order to obtain security in case one of their grants will not be renewed; and, the research grant system is set up to make research support awards for relatively short periods of time, thereby increasing the number of applications submitted for renewed support in each 10 year period.

                    (2)  Hard-money faculty salaries increasingly depend upon the amount of money brought in by research grant awards, and the best way to increase that number is to acquire additional grants.

(3)  The number of regular science faculty with soft-money salaries is rising.  Since only very few awards will support 100% of the soft-money salary level, this situation necessitates acquiring several different research grants.

(4)  Professional status as a member of the science faculty and as a university researcher now depends mainly on how many dollars are acquired from research grant awards.  The more, the merrier!

(5)  Academic status and reputation of departments and universities now depends mainly on how many dollars are acquired from research grant awards.   The more, the merrier!

(6)  In periods with decreased economic activity, appropriations of tax money sent to federal granting agencies tend to either decrease or stop increasing.  This means that more applicants must compete for fewer available dollars.  In turn, this results in a greater number of worthy awardees receiving only partial funding for their research project; the main way out of this frustrating situation is to apply for and win additional research grants.

What effects are produced by the hyper-competition for research grant awards? 

             It might be thought that greater competition amongst scientists would have the good effect of increasing the quality and significance of new experimental findings, since the scientists succeeding with this system should be better at research.  That proposition is theoretically possible, but is countered by all the bad effects produced by this system (see below).  I believe the funding success of some scientists only shows that they are better at business, rather than being better at science.  I know of no good effects coming from the hyper-competition for research grant awards.

Several different bad effects of hyper-competition on science and research now can be identified as coming from the intense and extensive struggle to win research grant awards.

(1)  Science becomes distorted and even perverted.  Science and research at academic institutions now are business activities.  The chief purpose of hiring university scientists now is to make more financial profits for their employer (see my early article in the Scientists category on “What’s the New Main Job of Faculty Scientists Today?”); finding new knowledge and uncovering the truth via research are only the means towards that end.

(2)  The integrity of science is subverted by the hyper-competition for research grants.  The consequences of losing research funding are so great that it is very understandable that more and more scientists now eagerly trying to obtain a research grant award become willing to peek sideways, instead of looking straight ahead (see my earlier article in the Big Problems category on “Why would any Scientist ever Cheat?”).  There are an increasing number of recent cases known where corruption and cheating arose specifically as a response to the enormous pressures generated on faculty by the hyper-competition for research grant awards (see my article in the Big Problems category on “Important Article by Daniel Cressey in 2013 Nature: “ ‘Rehab’ helps Errant Researchers Return to the Lab”).

(3)  Seeking research grant awards now takes up much too much time for research scientists employed at universities.  This occupies even more faculty time than is used to conduct research experiments in their lab (see my article in the Scientists category on “Why is the Daily Life of Modern University Scientists so very Hectic?”)!

(4)  Because the present research grant system is defective, the identity of successful scientists has changed and degenerated such that several very unpleasant questions now must be asked (e.g., Is the individual champion scientist with the most dollars from research grant awards primarily a businessperson or a research scientist?  Should graduate students in science now also be required to take courses in business administration?  What happens if someone is a very good researcher, but has no skills or interests in finances and business?  Could some scientist be a superstar with getting research grant awards, but almost be a loser with doing experimental research?).

(5)  If ethical misbehavior becomes more common because it is stimulated by hyper-competition , then could “minor cheating in science” become “the new normal”?  Integrity is essential for research scientists, but the number of miscreants seems to be increasing.

(6)  Inevitably, younger science faculty working in this environment with hyper-competition start asking themselves, “Is this really what I wanted to do when I worked to become a professional scientist?” The increasing demoralization of university science faculty is growing to become quite extensive.

            Grantspersonship refers to a strong drive in scientists to obtain more research grant awards by using whatever it takes to become successful in accomplishing this goal (see my recent article in the Money&Grants category on “Why is ‘Grantspersonship’ a False Idol for Research Scientists, and Why is it Bad for Science?”).  Grantspersonship and hyper-competition both are large drivers of finances at universities.   The Research Grant Cycle is based on the simple fact that more grant awards mean greater profits to universities (see my recent article in the Money&Grants category on “Three Money Cycles Support Scientific Research”).  The hyper-competition in The Research Grant Cycle is very pernicious, since the primary goal of research scientists becomes to get the money, with doing good research being strictly of secondary importance.  Grantspersonship sidetracks good science and good scientists.

What do the effects of hyper-competition lead to? 

All the effects of the current hyper-competition for research grant awards are bad and primarily mean that: (1)  science at universities is just another business; (2)  the goal of scientific research has changed from finding new knowledge and valid truths, into acquiring more money; (3)  the best scientist and the best university now are identified as that one which has the largest pile of money; (4)  corruption and dishonesty in science are being actively caused and encouraged by the misguided policies of universities and the research grant agencies; and, (5)  researchers now are being forced to waste very much time with non-research activities.  Hyper-competition thus results in more business and less science, more corruption and less integrity, more wastage of time and money, and, more diversion of science from its true purpose.  It is obvious to me that all of these consequences of hyper-competition are very bad for science, bad for research in academia, and, bad for scientists.

Can anything be done to change the present hyper-competition for research grants? 

The answer to this obvious question unfortunately seems to be a loud, “No”!  The status quo always is hard to change, even when it very obviously is quite defective or counterproductive.  Both universities and granting agencies love this hyper-competition for research grant awards, and this destructive system now is very firmly entrenched in modern universities and modern experimental science.

Big changes are needed in the policies of educational institutions and of federal agencies offering research grants.  Until masses of faculty scientists and interested non-scientists are willing to stand up and demand these changes, there will only be more hyper-competition, more corruption, more wasted time and money, and, more wasted lives.  In other words, science and research will continue to decay.

Concluding remarks

Hyper-competition for research grant awards in universities now dominates the academic life of all science faculty members doing research.  Although it pleases universities and the research grant agencies, this hyper-competition subverts integrity and honesty, changes the goal of scientific research, wastes very much time for faculty scientists, and sidetracks science from its traditional role and importance.

I know that many dedicated scientists on academia accept this perverse condition because they are successful in getting funded and want to stay funded.  Winners in the hyper-competition for research grant awards would not dare to ever give a negative opinion about this system, for fear of losing their blessed status.  They justify their position by stating that they would never cheat, they are too good at their research to ever be turned down for a grant renewal, and their university employer definitely wants them to continue their good research work.  It is sad that many will find out only when it is too late that they are very mistaken and very expendable.

 

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                           UNDER THE WEBSITE TITLE

 

 

WHY IS IT SO VERY HARD TO ELIMINATE FRAUD AND CORRUPTION IN SCIENTISTS?

 

Ordinary Career Goals Easily Have Room for Cheating! (dr-monsrs.net)

 

            Today in 2014, nobody knows exactly how much dishonesty is occurring in science (see my recent post on “Introduction to Cheating and Corruption in Science” in the Basic Introductions category).  Clear examples of cheating by research scientists continue to be discovered every year [e.g., 1,2].  This ethical problem always is potentially present, can be very destructive, and has several known causes (see my recent post of “Why Would Any Scientist Ever Cheat?” in the Big Problems category).  The problem of cheating and corruption in science is particularly hard to solve because the great majority of lapses in professional ethics remain unrecognizable and undetected. 

 

            Unethical behavior in modern scientific research at universities is encouraged by 4 changes from previous conditions that impact all faculty scientists. 

                        1.  Within universities, science has changed its goals from the discovery of new and true knowledge into the acquisition of commercial developments, obtaining more and more external research grant money, and achieving as many published research reports as possible.  In such an atmosphere, cheating and deceit are simply the result of the large pressures generated by these new goals (see my posts on “Introduction to Money in Modern Scientific Research” in the Basic Introductions category, and “Why Would Any Scientist Ever Cheat?” in the Big Problems category). 

                        2.  Today’s doctoral researcher employed in academia is so overwhelmed by the numerous demands for their time and effort that it is natural to search for easy ways to save precious time and speed up research progress (see my recent post on “Why is the Daily Life of Modern University Scientists so Very Hectic?” in the Scientists category). 

                        3.  Science and research always function immersed within the surrounding environment.  In the modern USA, research scientists are working today within a society where deception, fraud, insincerity, and even outright lying are too often considered useful and clever in advertising, all levels of education, business and commerce, court and legal activities, entertainment, federal and state governments, law enforcement, manufacturing, and, sports.  Thus, it would be nothing short of a miracle if some few scientists do not also follow these widespread unethical practices. 

                        4.  Money now is over-emphasized in scientific research (see my earlier post on “What is the Very Biggest Problem for Science Today?” in the Big Problems category).  The hyper-competition for research grants pervades all aspects of being a busy faculty scientist  (see my recent posts on “Money Now is Everything in Scientific Research at Universities” in the Essays category, and “Why Would Any Scientist Ever Cheat?” in the Scientists category).  The large pressures created by this condition easily can overwhelm any superficial adherence to honesty by some faculty researchers who are not sufficiently tied to the need of science professionals for total integrity. 

 

            Why is dishonesty so very bad for science that it must be eliminated?  Corruption in science breaks down trust by the public, by fellow researchers and other scholars, and by commercial interests.  Any breakdown of trust can be very destructive and usually spreads.  The whole enterprise of experimental science is based upon the trust that research results published by scientists are real, and that reported experiments will work as described when they later are repeated by other investigators.  Any falsification of research data and conclusions in journals or books can have devastating later consequences (e.g., doctoral research scientists working at some large pharmaceutical firm do not object when they recognize that their results with testing of a new drug have been manipulated by company executive administrators to remove the experimental evidence for some side effects).  Scientific and legal controversies originating or supported by fraudulent results and biased conclusions not only are a huge waste of time, but also waste large amounts of money. 

           

            Why can’t some “minor dishonesty” in research be tolerated?  This would have unfortunate practical consequences.  For all future research work, the “slightly dishonest researcher” must be expected to be willing to cheat again; this expectation follows from basic human nature.  Any and all research results from that person cannot ever again be taken at face value, but have to be independently verified by further experiments and tests.  Once trust by fellow research scientists is broken, it cannot be readily reassembled, barring development of some effective efforts with rehabilitation (see my recent post on “Important Article by Daniel Cressey in 2013 Nature” in the Big Problems category). 

           

            Are current efforts to try to control dishonesty in scientific research having good effects?  The penalties for dishonesty in research and the resultant breakdown in trust usually are not very severe.  In the past, most instances with detection of cheating and dishonesty have not produced very strong effects upon the perpetrator.  The recent federal laws designed to protect whistleblowers from retribution are well-intentioned, but do not attain their supposed aims.  Continuing to ignore this problem certainly will not make it go away.  History already proves that wishful thinking will not change the ongoing presence of corruption in science.  Although all research scientists will profess to have very strong standards of honesty, most will not ever take action if some corruption is observed or alleged.  The appointment of officials in charge of research integrity in universities is increasing and might help improve this problem in the future, but without strengthening all the other measures needed, this is likely to have only a nominal effect. Thus, I must conclude that current efforts to deal with dishonesty in science are not effective!

 

            Fraud and corruption in scientific research are especially hard to eliminate because: (1) their ultimate basis is normal human nature (i.e., working to increase fame and fortune), (2) they often are extremely hard to detect and very difficult to prove (i.e., allegations of dishonesty are meaningless without explicit authenticated documentation), (3) they are strongly stimulated by the enormous job pressures coming from granting agencies and universities (i.e., the time problem, and the money problem), and, (4) the penalties for being caught at corruption in science presently are too limited and not harsh enough.  Clearly, one cannot change the first condition (human nature), but the other 3 conditions can and must be changed in order to achieve much more extensive progress in dealing with this difficult ongoing problem.  Although it previously has been very difficult to eliminate dishonesty in science, I believe that this major problem for modern scientific research can be greatly improved by addressing these 3 areas.

 

            If cheating and fraud in science are so very hard to detect and prove, what can de done to stop dishonesty and corruption by scientists from becoming more frequent?  The biggest chance for success in eliminating the issue of dishonesty for modern science is to institute 3 large changes: (1) much more intense education about the need for research scientists to always be 100% honest, (2) much more effective and vigorous efforts to detect dishonesty in scientific research, and (3) much harsher penalties must be handed out for admitted or proven  unethical behavior by research scientists.  Making these 3 changes will help tip the balance when some weaker individual scientists are faced with any temptation to take the easy way out rather than maintain their professional integrity.  

 

          [1]  Mail Online, 2014.  Rogue scientist faked AIDS research funded with $19M in taxpayer funded money by spiking rabbit blood.  Daily Mail (U.K.), 26 December 2013.  Available online at:
http://dailymail.co.uk/news/article-2529541/Rogue-scientist-FAKED-federally-funded-AIDS-
research-spiking-rabbit-blood.html .

         [2]  Callaway, E., 2011.  Report finds massive fraud at Dutch universities.  Nature, 479:15.  Also available on the internet at::  http://www.nature.com/news/2011/111101/full/479015a.html .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                           UNDER THE WEBSITE TITLE

 

 

WHY WOULD ANY SCIENTIST EVER CHEAT?

 

 Cheating in Science (dr-monsrs.net)

Why do Children Cheat?    Who do Some Scientists Cheat?         (http://dr-monsrs.net)

 

           I myself do sincerely believe that most scientists are totally honest, just as they should be.  Why would any scientist ever elect to ignore professional ethics and cheat or be dishonest?  I think it likely that most unethical scientists do not really decide to be dishonest, but rather feel pushed into it.  There are many different factors and circumstances that cause and push some weaker individual scientists to cross the boundary between honesty and dishonesty.  These include: personal attributes and character defects, being surrounded by others who engage in dishonesty, employment in an institution that has only a superficial commitment to scientific research, working under an atmosphere where money rules all, not being internally strong enough to deal with all the external pressures involved with the research grant system, etc.  Such problematic situations can readily generate a very large pressure where some few individuals try to deal with their difficulties by taking the easy way out.  Fortunately, most research scientists are able to remain strictly honest in these same situations, and are determined to avoid corruption at all times. Nevertheless, history shows that some scientists do cheat (see my recent post on “Introduction to Cheating and Corruption in Science” within the Basic Introductions category). 

 

            For scientists, vexing difficulties with time management and handling research grants are major generators raising the pressure to cheat.  I have already described the overly busy life of scientists working as university faculty (see my recent post on “Why is the Daily Life of Modern University Scientists So Very Hectic?” in the Scientists category).  There are only about 18 hours per day for research scientists working in universities to handle laboratory work, teaching activities, supervision of graduate students and lab employees, writing and reading, preparation of abstracts for annual science meetings, family life, outside interests, etc., etc. (see my earlier post on “What Do University Scientists Really Do in their Daily Work?” in the Basic Introductions category).  This condition with its many deadlines frequently creates job difficulties in time management (= “the time problem”) that can become very problematic.


            Failure of an academic scientist to get a research grant renewed means loss of laboratory space assignment, loss of graduate students, additional teaching duties, and decay of professional reputation.  Yes, this does actually happen!  Anything at all that will aid in getting a new grant, assist in having a research grant renewed,  or produce more research publications might for certain individuals seem like a gift from heaven, but the use of dishonesty really is the opposite.  Some universities push their faculty scientists to  obtain several research grants, thereby greatly increasing the pressure of job difficulties with the research grant system (= “the money problem”).  For universities, additional grant awards mean more business profits, greater productivity from more publications means more status, and, improvements in their research reputation and renown mean more students and more opportunities.  The granting agencies themselves further increase these pressures by some of their present policies, particularly those that provide funding for only 1-5 years of laboratory work, thereby necessitating more frequent applications by research scientists. The total struggle to get and maintain research grant funding often is so intense and takes up so much time and effort by so many faculty scientists, that I term it a hyper-competition.  Modern scientists in academia are subject to pressure from both the time and money problems, but only some less dedicated individuals succumb and engage in unethical behavior as they try to deal with these job situations.  


            Unlike the widespread dishonesty and corruption currently seen in business and politics, very fewscientists engage in corrupt practices as a means to add dollars to their bank account.  Nevertheless, personal greed still is involved with any intent to obtain more grant money and more professional advantages through dishonest means.  Greed is involved with those who dishonestly obtain the award of a research grant, because that means that there then is less money available to fund other scientists who are deserving and honest.  Personal greed, along with excesses of such perfectly normal and good human characteristics as ambition, desire for improved status, eagerness in seeking increased prestige, and, striving to improve one’s lot in life, all can play important roles in determining whether any individual scientist will cross the line separating honesty from dishonesty. 

         

            All scientists performing laboratory studies within universities have to acquire a research grant award in order to pay for their research expenses.  This recently has created a new dimension for dihonesty in science: cheating on applications for research grants.  University scientists frequently ask one or more experienced faculty colleagues who are very successful with acquiring research grant awards to criticize their prospective applications.  Others go beyond this very useful practice and seek assistance by submitting the draft text with their ideas and plans for new experiments to professional editors or commercial advisors, in order to improve their presentation; so long as those experts only rework and polish what is furnished by theapplying scientist, that is honest (i.e., this seems analogous to a professional baker who makes a very large multilayered cake and then hires some specialist to put frosting and elaborate decorations onto it).  A typical example is when foreign-born scientists either ask a university colleague or pay an editor to find and correct errors in their English language expression within grant applications they have composed.  All of the above practices are widespread and seem to be perfectly honest.  On the other hand, using external experts to design and organize new experiments, create the research proposal and schedule, compose the bulk of the application, etc., then crosses the line between rught vs. wrong and must be considered to be dishonest, unprofessional, and condemnable.  Readers should note that after any applicant signs their own name onto an application that actually was authored by someone else, it is nearly impossible to detect this fraud just by inspecting the submitted documents.  Cheating and dishonesty on grant applications are directly encouraged by the enormous pressures to get more grant awards put onto the very busy faculty scientists working in universities (see my earlier post on “Money Now is Everything in Scientific Research at Universities” in the Money & Grants  category).

           

            To answer the question posed in the title, some few scientists do cheat because they believe that tactic will help to get them a personal reward or provide relief from difficult job pressures.  The specific causes for corruption in science involve certain situations: (1) defects in the personal character and professional dedication of  individual scientists, (2) the particular job environment, and (3) the current federal research grant system.  The large job pressures of being a modern faculty scientist trying to deal with the money problem and the time problem directly push some weaker researchers to become corrupt in their efforts to achieve job success. 

 

  GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                           UNDER THE WEBSITE TITLE

IMPORTANT ARTICLE BY DANIEL CRESSEY IN 2013 Nature: “‘REHAB’ HELPS ERRANT RESEARCHERS RETURN TO THE LAB”

 

             Daniel Cressey presents a very provocative and well-written article about the corruption problem in science, within the January 10, 2013, issue of the journal, Nature, Volume 493, page 147 [1] (also  available on the internet at:  http://www.nature.com/news/rehab-helps-errant-researchers-return-to-the-lab-1.12165).  Cressey reports that the number of cases of official misconduct in science seems to be increasing and new steps besides the traditional preventative measures now might be badly needed.  He states that the number of allegations of misconduct in science recorded by the US Office of Research Integrity (Rockville, Maryland, USA) nearly doubled from 2011 to 2012; some of this increase could be due to the new availability of a national center for submitting allegations of misconduct in science [1]. 

 

Cressey presents the story of Prof. James DuBois at St. Louis University (Missouri, USA), who has started a new program to try to rehabilitate errant research scientists, “RePair: Restoring Professionalism and Integrity in Research”.  This very innovative effort attempts to enable professional research scientists showing evidence of previous defective ethical judgment to be cleansed and changed back into productive research workers having much improved professional  standards.  The 3-day intensive program was developed with a $500,000 grant from the National Institutes of Health (NIH).  Numerous very interesting reader comments about this new idea are included following the main article in Nature [1]. 

      

Although many applaud the efforts of Prof. DuBois with this pioneering idea for professional re-education and restoration, it remains to be seen whether the corrupt  research scientists taking this course will be able to maintain their re-acquired high standards for the proper conduct of scientific investigations. One very modern veterinary research scientist in Korea was judged to have cheated and to have bad ethical demeanor, but now seems to have made much progress to reforming himself through efforts on his own [2]; he seems well on his way to again becoming a successful researcher.

 

             I myself believe that research scientists must be 100% honest.  Being honest most of the time is not enough for science and research; it is all or nothing.  Some would excuse simple lapses in honesty by virtue of the enormous pressures now facing faculty scientists working with research in modern universities; these corrupting pressures aim to get faculty scientists to acquire more and more research grants (see my earlier post on “What is the Very Biggest Problem for Science Today?” within the Big Problems category), to publish more and more research reports, and to continuously grow their professional reputation.  In response to these daily pressures and their numerous deadlines (see my recent post on “The Life of Modern Scientists is an Endless Series of Deadlines” in the Scientists category), some weaker individuals easily will cheat “just a little bit”.  I do recognize that such cases could be somewhat less condemnable than the outright fabrication of entire data sets, stealing of research data or research ideas from other laboratories and other scientists, or, cheating on applications for research grants from the federal funding agencies.  However, I still maintain that only 100% honesty can be accepted in professional scientists.  Any scientist who is just a tiny amount dishonest just at one time must be suspected to be very subject to additional corruption and cheating with their future research work.    Some of the many reader commentaries addressed to this important article agree with my own viewpoint. 

 

Any cheating by a research scientist is unprofessional and has dramatic practical consequences.  Not only does dishonesty damage the individual researcher, but it also decreases the ability of other scientists to be colleagues or collaborators, and reduces the very great amount of trust that the public extends to all scientists [3].  Thus, the effects of any corruption easily spread beyond the one errant individual to affect both other scientists and the entire public. New examples of professional dishonesty by faculty research scientists continue to be uncovered despite their universal condemnation by other scientists [e.g., 4,5]. 

 

What is being done to prevent these problems from occurring?  What can be done that will give a better result?  The usual wishful thinking and slaps on the wrist will not prevent these events from happening!  My suggested solution to this important problem in modern science is to institute several new changes so that: (1) the need for 100% honesty must be taught to all prospective scientists, beginning in primary (grade) school (before they even decide that they definitely want to become a scientist) and continuing through their graduate school education, (2) much more active means to detect and investigate dishonesty are adopted by academia, granting agencies, professional science journals, and book publishers, and, (3) much stiffer penalties must be accorded to those scientists where professional misconduct is either admitted or can be proven.  All of these measures will help counteract the pressures engendered by the vicious hyper-competition for research funding, and hopefully will strengthen the personal dedication to integrity in some weaker scientists.  The novel restorative efforts originated by Prof. James DuBois also will help, provided that they actually work; it will be interesting to read about evaluations of the effectiveness of this new restorative program after more participants have been enrolled and returned to conduct new research studies. 

 

[1] Cressey, D., 2013.  RePair: Restoring professionalism and integrity in research.  Nature  493:147.  Also  available on the internet at:  http://www.nature.com/news/rehab-helps-errant-researchers-return-to-the-lab-1.12165)

[2]  Cyranoski, D., 2014.  Cloning comeback.  Nature  505:468-471.  Also available online at:  http://www.nature.com/news/cloning-comeback-1.14504.

[3]  Pew Research, 2009.  Public praises science; Scientists fault public, media; Scientific achievements less prominent than a decade ago.  Available online at:                                       http://www.people-press.org/2009/07/09/public-praises-science-scientists-fault-public-media/ .

[4]  Callaway, E., 2011.  Report finds massive fraud at Dutch universities.  Nature, 479:15.  Also available on the internet at::  http://www.nature.com/news/2011/111101/full/479015a.html .

            [5]  Mail Online, 2014.  Rogue scientist faked AIDS research funded with $19M in taxpayer funded money by spiking rabbit blood.  Daily Mail (U.K.), 26 December 2013.  Available online at:  http://www.dailymail.co.uk/news/article-2529541/Rogue-scientist-FAKED-federally-funded-AIDS-research-spiking-rabbit-blood.html .

     

 GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                           UNDER THE WEBSITE TITLE

INTRODUCTION TO CHEATING AND CORRUPTION IN SCIENCE

 

Dishonesty in Science (http://dr-monsrs)

  

             How much cheating and corruption is there in science?  The best answer is that nobody knows!  Even today in 2014, there continue to be much-publicized instances where some professional research scientist is revealed to have published research results in peer-reviewed journal articles where the reported experimental data were either fabricated (faked) or were grossly changed (i.e., to construct a surprising pseudo-result) [e.g., 1,2].  While money is almost always involved in some way, for corruption in science money only rarely goes directly into the pocket of the dishonest scientists, unlike the usual situation for widespread corruption within politics and the business world.  Instead, it often goes into their professional purse and is used for such personally rewarding expenses as the purchase of additional research equipment not paid for by their grants, salaries for additional research coworkers, extra business travel, a new computer with special software, etc.). 

 

  Dishonesty in science includes several different types of unethical activity.  At a simple level, this corruption can involve such disgraceful events as (1) adding some imagined numbers to a chart of experimental results, so as to get better statistics, (2) changing or removing some numbers in a chart of collected results, so as to shift the conclusions being supported by these data, (3) misrepresenting the design of experiments, so as to support certain conclusions or deny others, or (4) not giving appropriate credit to internal or external collaborators and coauthors.  Thus, these simpler types of dishonesty involve research fraud by data fabrication and manipulation, drawing false conclusions, theft of intellectual property, etc.  At a more complex level, dishonesty in science can involve such activities as (1) stealing experimental research data from other labs, (2) stealing ideas or even research projects from other scientists, (3) fabrication of entire experimental datasets, or (4) constructing an application for a research grant using imaginary results or falsified statements.  These larger types of dishonesty thus involve theft of data, lying about the experimental results gathered, stealing of ideas, misrepresentation with the intent to deceive, etc.  Some or even many readers will wonder how in the world could any of these examples actually happen?  I assure them that I have heard rumors, seen and listened to stories, and, read reports about all of these!  Moreover, I have conversed with two separate doctoral workers who unsuccessfully pursued lawsuits for their claims of data theft.

   

  I personally believe that almost all faculty scientists are completely honest.  Any unethical behavior by professional scientists betrays the enormous trust given to them by the general public [3], and the necessary trust given by their fellow researchers.  Any dishonesty thus destroys both the integrity of science and the practical ability of other researchers to proceed forward from what they believe is the truth when designing new research experiments.  When dishonesty occurs in successfully acquiring a research grant, that event directly decreases the chance that some other scientist who is totally honest is able to acquire funding for their worthy project; this type of robbery is not often recognized as being a very important part of modern corruption in science.  A shocking and disgraceful example of successful cheating in order to get a large research grant award was uncovered very recently [1]. 

 

In addition to outright dishonesty and deception by scientists, where research integrity is discarded, there also is a gray area where some very limited portion of collected data (e.g., a very few outliers in a data plot) is eliminated from the total pool of experimental results displayed.  The opposite condition for this same kind of situation also occurs, where one or two pieces of individual data that are much better, clearer, or prettier than the average case, are selected to be shown in publications and in oral presentations.  These practices are not at all unusual and are known generically as “fudging the data”; both can simply serve to make the quality of the collected data look better and be seen more easily.  They commonly are not considered to be dishonest. 

 

 What happens when outright dishonesty by a faculty scientist is either proven or admitted?  In many cases, there has been almost no penalty given beyond having a published article withdrawn or being discharged from a laboratory group.  Part of this apparent lack of serious concern is due to the fact that in cases where some very celebrated scientist has been accused of being involved in corruption, long battles and countercharges in the courts have ensued [e.g., 4,5].  If famous research leaders are directing some very large laboratory in which the cheating allegedly occured, it usually is totally difficult to prove either that they were involved in the dishonest act(s) carried out by some individual lab worker, or that the leader even knew about the wrongful event(s) [4,5]; separation of the supervisor from actual technical workers is very widespread within giant laboratory groups (research factories), where the chief scientist really is only an administrative manager and does not even know the names of all the people who work there. 

 

Most corruption in science almost certainly remains undetected.  Unless there is some witness who is upset enough and courageous enough to report the dishonesty, and unless hard and fast documentation can be acquired, the loss of research integrity will never become known or proven. A good example of this is given by the very recent case cited earlier [1], where the dishonesty was discovered only when some other research laboratories found that they could not duplicate some of the experimental results published by the unethical scientist.  Despite new rules intended to protect whistleblowers and the recently increasing appointment of officials in charge of research integrity at academic institutions, it continues to remain very difficult to investigate and prosecute alleged dishonesty in science.  There is a natural reluctance for anyone working in academia, whether faculty or students or lab technicians, to make accusations that necessarily will involve official investigations, prolonged legal activities, and possible retribution.   

                      

Clearly, the present measures being taken to prevent, detect, and punish dishonesty in scientific research are inadequate.  There is too much lip service in dealing with cheating and corruption in science, and it seems likely that this problem will increase.  I suspect that the amount of dishonesty in applications for research grants particularly is increasing now, and soon will become the most frequent form of corruption in science.  The chief driver for my prediction is that it is very, very hard to detect, and nearly impossible to prove, any dishonesty in grant applications; moreover, there presently is only scanty attention and little concern being given to this problem by the different granting agencies.

           

Although all academic sicentists are quite aware of the problem of dishonesty and corruption in science, there generally are few casual or formal discussions about this issue.  Exactly why do some few scientists become dishonest?  What motivates cheating and dishonesty in science?  How can dishonesty and corruption in scientific research be decreased and eliminated?  What new penalties should be instituted for cheating in research?  Can an unethical researcher be made honest by some curative process?  I will discuss these complex questions and related issues within future postings. 

 

[1]  Mail Online, 2014.  Rogue scientist faked AIDS research funded with $19M in taxpayer funded money by spiking rabbit blood.  Daily Mail (U.K.), 26 December 2013.  Available online at:  http://www.dailymail.co.uk/news/article-2529541/Rogue-scientist-FAKED-federally-funded-AIDS-research-spiking-rabbit-blood.html

[2]  Callaway, E., 2011.  Report finds massive fraud at Dutch universities.  Nature, 479:15.  Also available on the internet at::  http://www.nature.com/news/2011/111101/full/479015a.html .

[3]  Pew Research, 2009.  Public praises science; Scientists fault public, media; Scientific achievements less prominent than a decade ago.  Available online at:                                       http://www.people-press.org/2009/07/09/public-praises-science-scientists-fault-public-media/ .

[4]  Wright, P., 2003.  Robert Alan Good.  The Lancet362:1161.  Also available on the internet at:                                                                                                          http://www.thelancet.com/journals/lancet/article/PIIS0140-6736%2803%2914489-3/fulltext .

[5]  Bombardieri, M., & Cook, G., 2005.  More doubts raised on fired MIT professor.  In: The Boston Globe, October 29, 2005.  Available online at:  https://secure.pqarchiver.com/boston/doc/404985132.html?FMT=ABS&FMTS=ABS:FT&type=current&date=Oct+29%2C+2005&author=Marcella+Bombardieri+and+Gareth+Cook%2C+Globe+Staff&pub=Boston+Globe&edition=&startpage=&desc=MORE+DOUBTS+RAISED+ON+FIRED+MIT+PROFESSOR .

. 

GO BACK TO HOME PAGE   OR   SCROLL UP TO MENU

                                                          UNDER THE WEBSITE TITLE

ON THE PUBLIC DISREGARD FOR SCIENCE AND RESEARCH

 Science and Research have No Imprtance to Daily Life!

  Science  and  Research  Have  No  Importance  for  Daily  Life !!                          (dr-monsrs.net)

           

            Most scientists are aware that specialized investigations in science, whether performed by Nobel Laureates or by themselves, are totally uninteresting to all people in the general public.  The major causes of this unfortunate estrangement between ordinary people from science are: (1) the public is given a very inadequate education about science and research in schools and the media (see my recent post on “Most of Today’s Adult Education About Science is Worthless!” in the Education category), (2) researchers in all branches of science communicate with special terms and abstract concepts, none of which areunderstood by the public, (3) almost all people have never talked to a real live research scientist or visited a research laboratory, (4) the media presents scientific research as some sort of amusement, and as being conducted by brainy creatures wearing white lab coats and coming from another planet, and, (5) most people feel that science and research have no importance for their daily life.  All of these causal factors now have been active for a long time, and their negative effects are quite ingrained in modern society. 

 

            The unfortunate consequences of these 5 conditions are that the modern public: (1) has no realistic idea what science is and how research works, (2) has almost no comprehension of how science and research has advanced daily life, (3) is only aware of pseudo-science, but not of real science (eu-science), (4) does not see that science is people, and (5) pays no attention to science, except for watching some science circus show on the television.  The end result of these several and deficiencies is that ordinary adults today have no interest, no understanding, and no regard for science, research, and scientists. 

 

            Removing the causes will greatly decrease these unfortunate consequences, and will permit many adult non-scientists to develop a growing understanding and a natural curiosity about scientific research.  In particular, if the needed changes can be made, then: (1) people will begin to see scientists as dedicated fellow individuals whose work is important to everyone’s daily life and hopes for the future, and (2) the media will stop the incessant titillation of the public by showing scientific research as an amusement (e.g., “Who is today’s new star scientist?” and “What is the most amazing research discovery in science this week?”).  The media must present real science in action, in order to diminish the false view that science is an amusement.  The difficult removal of the common belief that “science doesn’t matter at all to me” will necessitate showing how current important practical problems are being examined in actual experimental studies by real scientists and engineers, and, presenting many real examples about how scientific research has originated interventions or improved solutions to modern practical problems that everyone is familiar with (e.g., anti-cancer therapies, detection and diagnosis of microbial infections, disease-resistant agricultural crops, high-tech batteries, new additives for gasoline, new types of light bulbs, paternity testing based on DNA, remediation of environmental pollution, etc.).  

 

            The recent development of crowdfunding (see my recent post on “Money Now is Everything in Scientific Research at Universities” in the Money & Grants category), where very numerous individuals in the public elect to each contribute a small donation to help support some research study in an area having their personal interest [e.g., 1-3], also has created a new mechanism for stimulating constructive personal interactions between the public and scientists.  In some of the research studies supported by crowdfunding, the donors (i.e., ordinary adults) are invited to actually join in with the scientists to work on that project.  In all such cases, these people will develop a much better personal understanding about how research actually is done (e.g., not all experiments work, the results obtained can be quite different from those expected, many experiments and a considerable period of time usually are required to reach a solid conclusion, there can be more than one interpretation of research data, etc.).  Secondary benefits are that these adults will later tell their friends about their experience in the crowdfunding project, encourage the interest of their children for science and research, and, become much more supportive of scientific research studies in general. 

 

            Some national science societies now feature special educational sessions at their annual meeting, open for attendance by the adult public, school children, school teachers, and the local media.  This is a great idea, but would be even better if these sessions are recorded and then made available for wider viewing at individual convenience on the internet.  Additional new efforts are needed in this very important area.  These should include: (1) better adult education about science and research; (2) more opportunities for adult non-scientists to meet and talk to real scientists; (3) more opportunities for both younger and older persons to personally participate in selected actual research projects; (4) more opportunities for the public to visit real research laboratories at universities, hospitals, government laboratories, and, industrial research and development centers; and, (5) elucidation on the internet and television about how truth is established by scientific research, the path whereby some research scientists have become especially famous and celebrated, and, exactly how exciting new technologies were developed by scientists and engineers.  All of these new educational efforts will produce changes resulting in greater public understanding about real science, how research is done, and, why advances in science and technology depend upon the new ideas and new concepts coming from creative and dedicated individual research workers. 

 

[1]  Stewart, M., 2013.  With funding becoming scarce, scientists are looking to the public for help.  ASBMB Today, 12:21-23.  Available on the internet at:                                          
http://www.asbmb.org/uploadedFiles/ASBMBToday/Content/Archive/ASBMBToday-2013-11.pdf .

[2]  Rice, H., 2013.  Crowdfunding, Overview.  The New York Academy of Sciences, Academy eBriefings, October 9, 2013.  Available on the internet at:                        http://www.nyas.org/publications/EBriefings/Detail.aspx?cid=82c4e4b4-f200-49b3-b333-c41e1e2f46aa .

[3]  Schmitt, D., 2013,  Crowdfunding science: could it work?  Higher Education Network, The Guardian, Nov. 11, 2013.   Available on the internet at:                                                       http://www.theguardian.com/higher-education-network/blog/2013/nov/11/science-research-funding-crowdfunding-excellence .

. 

 GO BACK TO HOME PAGE   OR   SCROLL UP TO MENU

                                                            UNDER THE WEBSITE TITLE

 

 

WHAT IS THE VERY BIGGEST PROBLEM FOR SCIENCE TODAY?

 Top Secret FINAL     What is the very biggest problem for science/scientists at universities ?                                                (http://dr-monsrs.net)


           Quite frankly, I believe that science and research now have several very difficult large problems.  The thousands of doctoral scientists around the world who are working in universities generally either are not very aware of these serious issues, or feel helpless to challenge the status quo.  Do I believe that the widespread estrangement of the public from science and research is the biggest problem?  No I don’t!  Is the fact that there never seems to be enough money to support research the biggest problem?  Not in my opinion!  Do I consider that the biggest problem is the disastrous consequences that good scientific research has had for Fukushima, recombinant agricultural crops, modern weapons systems, etc.?  No I don’t!  My personal opinion is that the number one biggest problem for science today is the commercialization of research within universities.  This change in the direction of scientific investigations produces bad consequences for the public, including you and me.  What has caused this large change to develop?  What are its effects for scientific research?

           

            The many research scientists and engineers working in industrial laboratories always have worked knowingly within the context of trying to increase the commercial profits of their employer.  Any given study in industrial labs can be stopped abruptly for business reasons, as well as because the research experiments are not progressing in a satisfactory manner.  This industrial system seems to have worked out quite well in most cases.  However, until recently, basic research by scientists working in academia has not been directly involved with business profits.  The new commercialization of scientific research in universities markedly changes this traditional situation.

            

           Basic scientists formerly obtained money from government research support programs in order to be able to pay the costs of conducting experimental studies within universities.  Via commercialization, things now have switched around so that university science faculty seek research grant awards to enable  their employer to gather increased income and profits; scientific research is only the means to this mercenary end.  In other words, the current aim is simply to get as much money as possible, thereby raising profits for the employing university.  Many science faculty become quite dismayed when they come to realize that the real goal is the money, not the research itself.

            

           Different universities and specialty schools now commonly are compared and ranked on the basis of their annual total research grant awards.  This vigorous lust for research grants has become the major reason why doctoral scientists are hired as faculty in academia.  The professional reputation of a faculty researcher conducting experimental studies in any branch of science now is mainly determined by the total amount of dollars in their research grant awards; such features as innovation, significance, difficulty, and quality in their research findings is of distant importance.  Similarly, the quality of their teaching activities now is strictly of secondary concern.  The entire nature of being a faculty scientist has changed.

            

           Scientific research in academia thus has been turned into just another business activity.  Faculty scientists now are fully part of this new commercialized system where universities openly grasp for increased profits.  Many universities try to explain their shift into seeking profits from research grant awards as a necessary response to declining alumni donations, shrinking endowments, decreasing enrollments, increasing regulations and administrative expenditures, and, the inflating costs for everything.  They can no longer utilize their traditional practice of simply charging students more and more for tuition each year, but it is easy to hide the new commercialization of  their science faculty.  The accompanying negative consequences of this situation are either denied or ignored by these same universities.

            

           Commercialization affects all aspects of being a faculty researcher.  Any academic research scientist working to find the cause or a cure for some disease now almost always is looking around simultaneously to identify which commercial companies will be interested in developing and marketing this wonderful new knowledge.  Those faculty researchers in materials science who are investigating a new type of coating that can reduce friction by several hundred-fold now almost always are simultaneously wondering if it would be better to first contact an established firm selling coatings, or to form a new start-up firm, before they publish anything.  Academic institutions generally have dedicated offices for aiding their faculty scientists to acquire patents and participate in commercial ventures jointly with industrial partners.  In all these cases, the possibilities for later profit have become the chief driver, if not the actual purpose, for the investigational efforts by faculty scientists. 

           

            Although the traditional aim of basic scientific research was to find new knowledge and discover what is true, the search for truth now seems idealistic and is disappearing from view.  For pure basic science, which seeks new knowledge for its own sake, there usually had been very little of looking to acquire profits from a research discovery; if the new basic knowledge later helps the public, then so much the better, but this was not the aim of the experimentation.  Increased commercialization now has spread everywhere throughout basic research.  In turn, this modern re-direction of research efforts strongly encourages applied research and equally strongly de-emphasizes basic research. 

            

           What are the main consequences of this ongoing commercialism in academic science?  The chief effect is that the ever-increasing importance of profits causes the down-sizing of basic research.  Indeed, to a growing extent, both research investigations in universities and the enthusiasm of the granting agencies now are directed towards applied research and engineering rather than to basic studies.  Why is it considered horrible if basic investigations are disfavored and diminishing?  The reason is that almost all of the wonderful new high technology devices and other features that characterize modern life have arisen by the work of applied scientists and engineers upon the preceding discoveries by basic researchers.  Basic science is the necessary precursor to later studies and developments by applied scientists and engineers.  If basic research decreases its production of new findings, there will inevitably follow a slowing of new and improved products and processes; that will have negative effects upon everyone.  

            

           Yet other bad effects of the commercialization of university science include: (1) creativity, formation of new concepts, and curiosity are decreased inside the research endeavor; (2) the conduct of experimental studies are made more mechanical, and more studies are channeled towards large groups where each individual scientist necessarily becomes a doctoral technician, rather than an independent thinker and creative doer; and, (3) as individual activities and creativity in basic science are increasingly smothered, so is the traditional main source being lessened for new thoughts, unconventional ideas, new concepts, and perception of unexpected interrelationships.  The new chief aim of acquiring financial profits (i.e., as research grants) further subverts the traditional conduct of scientific research in academia by exposing it to all the greed, cheating, and underhanded actions that are sadly characteristic of the dynamics of money in too many modern businesses.  All these effects from pervasive commercialization are having a very negative influence on the progress of science in the modern world.

           

            There are many other important aspects of this subject, and all of these are very infrequently discussed.  I will deal much further with commercialization and other modern problems for science and for research by university faculty within future postings. 

BACK TO HOME PAGE     OR     SCROLL UP TO MENU UNDER 

                                                         THE WEBSITE TITLE

17 thoughts on “PAGE ON BIG PROBLEMS:

  1. Thanks for a marvelous posting! I really enjoyed reading it, you happen to be a great author.I
    will ensure that I bookmark your blog and will eventually come back in the foreseeable future.
    I want to encourage continue your great work, have a nice afternoon!

  2. Nice read, I just passed this onto a friend who was doing a little research on that. And he just bought me lunch as I found it for him smile Thus let me rephrase that: Thanks for lunch!

  3. Hmm is anyone else having problems with the pictures on this
    blog loading? I’m trying to find out if its a problem on my end or if it’s the blog.
    Any responses would be greatly appreciated.

  4. It is appropriate time to make some plans for the future and it is time to be happy.
    I’ve read this post and if I could I want to suggest you few interesting
    things or advice. Maybe you could write next articles referring to this article.
    I desire to read more things about it!

  5. Your style is very unique compared to other folks I’ve read stuff from.

    Thank you for posting when you have the opportunity, Guess
    I will just book mark this site.

  6. Attractive component of content. I simply stumbled upon your site and in accession
    capital to say that I acquire in fact enjoyed account your weblog posts.
    Any way I will be subscribing for your augment and even I success
    you access consistently quickly.

  7. I am really impressed with your writing talents as smartly as with the layout to your weblog. Is that this a paid subject or did you customize it your self? Either way stay up the nice high quality writing, it is rare to peer a great weblog like this one these days..

  8. I don’t need to customize anything, Lonnie, because I am using the standard WordPress 2013 theme!

    Dr.M

  9. Way cool! Some extremely valid points! I appreciate you penning this write-up and the rest of the website is also very
    good.

  10. I needed to thank you for this good read!! I definitely loved every bit of
    it. I have you saved as a favorite to look at new things you post…

  11. It’s in point of fact a nice and helpful piece of info.
    I am glad that you just shared this helpful information with us.
    Please keep us informed like this. Thank you for sharing.

Leave a Reply

Your email address will not be published. Required fields are marked *