PAGE on SCIENTISTS:

A DRAMATIC INDIVIDUALIST, PAUL G. ALLEN, IS A MAJOR BENEFACTOR OF SCIENTIFIC RESEARCH!

 

Quotations from Paul G. Allen, a most dynamic and revolutionary thinker and doer! (http://dr-monsrs.net)
Quotations from Paul G. Allen, a most dynamic and revolutionary thinker and doer! (http://dr-monsrs.net)

 

The co-founder of Microsoft (1975) , Paul G. Allen, has already given over 2 billion dollars to establish several far-sighted new research institutes.  He is a free-thinking man with numerous activities and widespread interests, ranging from music to professional sports and spaceflight.  This dispatch briefly summarizes the remarkable scope of Allen’s dynamic activities, and then discusses how his philanthropy is benefiting scientific research in a big way; a following article will discuss the very novel features of his latest innovative program for stimulating the progress of scientific research.

Background about a vigorously independent individual: Paul G. Allen [1-3]! 

Paul Allen is an author, business owner and investor, entrepreneur and industrialist, explorer of history and geography, founder of several museums, inventor, moviemaker, owner of several professional sports teams, promoter of urban projects in Seattle (his hometown!), rock guitarist, supporter of education and the arts, technological visionary, yachtsman, and, one of the world’s leading philanthropists.  In addition to working with his sister, Jody Allen, on many of those activities, he has utilized his Allen Family Foundation to greatly benefit several universities in the state of Washington, start the Allen Distinguished Educators program that rewards particularly creative and effective education developments by teachers in primary and secondary schools, support a non-governmental organization, Elephants Without Borders, to further the conservation of wild elephants in Africa, establish the Paul G. Allen Ocean Challenge as a public contest for improving the health of our oceans, along with stimulating a variety of other programs, projects, and personal explorations.  Most of this is carried out by his company, Vulcan, Inc.; one of its many activities is Vulcan Aerospace, a division  including a collaborative space exploration project with the noted engineer, Burt Rutan (see: “Stratolaunch Systems, A Paul G. Allen Project” ).

Tying all these many explorations together is Paul Allen’s extensive curiosity, diverse personal interests, determination to make ideas flow into new knowledge, affection for going where no-one has tread before, and, his optimistic belief that anything is possible.  For him, the future can be opened right now!  In 2005, Paul Allen published an autobiographical book, Idea Man, A Memoir by the Cofounder of Microsoft, recounting his experiences in co-originating Microsoft; 10 short videos based on this book graphically illustrate his youth and development of operating systems in the early days of personal computing (see “Idea Man Part One: Roots” ).

Paul G. Allen has advanced scientific research in revolutionary ways [1-3]! 

For trying to push science and research beyond all their usual goals and practices, Paul Allen founded and funded the Allen Institute for Brain Research in 2003, the Allen Institute for Artificial Intelligence in 2013, and, the Allen Institute for Cell Science in 2014.  These research centers in Seattle feature technologically advanced experimental research by scientists and engineers, and involve such very large and complex research questions as how does the brain work (i.e., how do some 86 billion neurons interact to furnish memory and reasoning?), what can artificial intelligence do for humans (i.e., as individuals and as society?), and how do our cells conduct their varied functions (i.e., in health, disease, and regeneration?).  These giant research investigations at these Institutes all are in the realm of “big science”.

The goals of Paul Allen are nothing less than to revolutionize science and speed up the progress of research.  To do that, he brought the practices of industrial research to bear at the Allen Institutes; these feature numerous doctoral specialists working as teams supported by a large staff and advanced research instrumentation facilities.  At the Institutes, there is little of the problems characterizing science at universities (i.e., massive individual competition, constant worries about continued research grant funding, and, doing niche studies needing only shorter periods of time).  Jumps of discovery are encouraged by creativity, innovation, and interactive teamwork.  Output of these large-scale science projects is made available as internet resources for use by other researchers throughout the world; examples include several Allen Atlases for the mouse and human brains in adulthood and during embryonic growth, the Allen Brain Cell Types Database, the Mouse Neural Connectivity Atlas, and The Animated Cell, a multiscale virtual model that integrates all knowledge about cells and can predict changes in their behavior.

The vision, organization, and goals of these research institutes mostly come from Paul himself.  He sees that science and technology can make dreams become real; he values unconventional new ideas that stimulate groundbreaking findings and jump into the future.  All this aims to benefit the entire world and all people.

Concluding remarks! 

Paul G. Allen is a most dynamic individual!  He deserves admiration for using his own money to benefit science and engineering, the arts, Seattle, Africa, oceans, wildlife, museums, and people everywhere.  He clearly is making a big difference in the conduct of scientific research, by promoting a new design for research on very fundamental large-scale questions.  It is easy to predict that the outcome of his vision of what science and research should be doing will be nothing short of wonderful!

VIDEOS:  Many videos about Paul G. Allen both inside and outside science are available on the internet!  For a glimpse of the man himself, I recommend the following 3!

(1)  “Paul Allen on Gates, Microsoft” by CBS (2011); this presentation involves a hostile interviewer!

(2)  “Stratolaunch Systems: A Paul G. Allen Project” by Vulcan, Inc. (2011); turning ideas into reality!

(3)  “Paul G. Allen on Art” by Vulcan, Inc.  (2015); presents Allen’s many activities to make good art available to the public!

 

[1]  @PaulGAllen, 2016.  “Home page” .  Available on the internet at:  http://www.paulallen.com/ .  NOTE: explore the different headings!

[2]  Allen Institute for Brain Science, 2013.  “Allen Institute for Brain Science: Fueling Discovery” .  Available on the internet at:  https://www.youtube.com/watch?v=9HclD7T9KFg .

[3]  Allen Institutes, 2016.  “About” .  Available on the internet at:  http://www.alleninstitute.org/about/ . NOTE: explore the variety of headings indicating the diversity of Paul Allen’s many activities!

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE

 

STUFF YOU NEVER HEAR ABOUT SCIENTISTS: GETTING SCOOPED!

 

Getting scooped really can happen to scientists! (http://dr-monsrs.net)
Getting scooped really can happen to scientists!   (http://dr-monsrs.net)

 

Being a researcher is an adventure! You will never hear about experiments that don’t work, great results that cannot be duplicated, good manuscripts or patent applications that keep getting rejected, problems with jealous bosses, or, not being able to get adequate lab space! This article discusses one situation involving research publications that is always lurking around and ready to pounce on innocent hard-working professional researchers.

Publication of research reports in science journals!

All scientists want to be the first to report some new research discovery or new concept. Researchers at all levels always try to avoid getting scooped. This term is derived from the competition between daily newspapers, whose reporters always vigorously seek to be the very first to notify the public about something alarming, scandalous, or newsworthy.  For scientists, getting scooped means that some scientist publishes a research result just before the same new finding is independently published by another scientist; the first to publish scoops the second.

This situation of getting scooped typically occurs in science because it often is impossible to know whether some other scientist is working on the same research question (i.e., there is no database listing what global research studies are in progress). The act of scooping almost never is done on purpose, but rather simply happens as a coincidence. When 2 very similar research reports appear, both authors are very surprised to learn about this duplication. The authors of the report published first are delighted when a second scientist soon verifies their findings; such confirmation more usually takes months or years to appear in print, but in the case of scooping, the second report appears within a few days or weeks after the first report. Scientists authoring the second publication inevitably get upset!  Some journal editors receiving 2 manuscripts that are very similar will publish the pair side by side in one issue; in such cases, both authors equally get full credit for making a discovery.

This situation of being outrun in the race to publish first means that all research scientists are in a hurry to publish their research findings so as to decrease the chance of getting scooped. Those researchers working on very hot topics are especially paranoid about getting scooped. While rushing into print or publishing short limited aspects of a long study now is commonplace, that tactic can have its own negative consequence (i.e., decreased quality).

Scientists working at industrial labs face very analogous issues with obtaining patents.  Until a patent application is finally approved, everything must be kept totally secret in order to preclude simultaneous applications submitted by research groups in other companies. Getting the first patent is desired by everyone’s ego, and is deemed totally essential by their employer!

Can scoopage be avoided?

Getting scooped is a risk that really cannot be prevented! However, there is a common way to try to avoid it. This is done by publishing abstracts at the annual meetings of science societies. Abstracts are only one paragraph long and report only some limited portion of experimental results and preliminary conclusions. Nevertheless, publication of abstracts in a science journal usefully serves to establish priority. Of course, a more definitive way to avoid the problem of getting scooped is simply to publish first.

What are the consequences of getting scooped?

Getting scooped is unpleasant since that automatically reduces the credit given to the author-scientist issuing the second publication. With further research work, both authors try to rapidly turn out more publications, so as to raise their identification for being the leader with studying that research topic. The consequences of getting scooped can be much more severe for graduate students than for other scientists; if their thesis project is scooped, it is no longer new to science, and often then cannot be approved for an advanced degree without much additional research.

One of my fellow graduate students was finishing several years of research work on his thesis project. Upon completing the preparation of illustrations for a long manuscript to be submitted a few days later to the Journal of Cell Biology, the latest issue of this monthly journal arrived and he was truly shocked to see that there was a big article by a famous professor on the East Coast that was almost duplicating his own manuscript! Even some of the figures were nearly identical! Neither researcher knew that the other was working on exactly the same topic, and this coincidence was simply some very bad luck for my friend. Since he was a very hard worker, he fortunately also had a second major aspect in his thesis research, and so was able to successfully use those other results to rewrite and compose a doctoral thesis different from his original plans.

Concluding remarks!

Yes, some scientists really do get scooped! One of the hazards of working in scientific research is that nobody knows whether others are researching on the same topic until abstracts or full publications appear. The presently increasing number of research scientists and increasing pressure from the current research grant system undoubtedly raise the incidence of getting scooped!

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE 

 

TEENAGE SCIENCE: GRAND WINNERS ANNOUNCED FOR 2016 SCIENCE TALENT SEARCH! 

 

Yes, some teens love science and already work on research! (http://dr-monsrs.net)

Yes, some teens love science and already work on research! (http://dr-monsrs.net)

 

Winning contestants for the annual Science Talent Search, a large competition for high school students in the United States (US), have just been announced.  Following a description of this activity sponsored by the Intel Corporation and conducted by theSociety for Science & the Public, I will give a few comments about this program.

A brief history of the Science Talent Search and its sponsors [1-3]! 

This contest was originated in 1942 by the precursor of the Society for Science & the Public (see:  https://www.societyforscience.org/mission-and-history ). Its chief aim is to promote education and interest in science.  This Society also runs 2 well-known websites devoted to public education about science: (1) Science News is for all the public (see: https://www.sciencenews.org ), and, (2) Science News for Students serves many youths (see:  https://student.societyforscience.org/sciencenews-students ).

With financial sponsorship for many years by the Westinghouse Corporation, the participation by US students, their teachers, and others grew over the years.  In 1998, theIntel Corporation took over financial sponsorship, and initiated a second science competition for international youths, termed the Intel International Science and Engineering Fair; that involves many affiliated science fairs in over 75 countries.  A number of other businesses add to the total financial sponsorship.

The importance and success of these annual events are widely recognized by the public and all media.  For the latest 75th Intel Science Talent Search, awardees won prizes totaling over  $1,600,000!  After 2017, a new major sponsor must be found to replace Intel [4].

How is the Science Talent Search organized and conducted [1-4]? 

This large competition is for students in US high schools and home schools.  The ideas, plans, and conduct of the research project must come from the individual student.  In addition to the experimental work, each contestant must compose a document about their project, using a format similar to research reports published in professional science journals.  All contestants are judged by scientists working in the same area of research as the teenagers.

For the latest competition (2016), there were around 1,750 applicants.  From these, the reviewers selected 300 semi-finalists.  Further expert reviews looked for creativity, good design and conduct, valid conclusions, and evidence of innovation, resulting in 40 finalists.  For 2016, 3 levels of awards are given in 3 categories of science and research: (1) basic research, (2) (research for) global good, and (3) innovation.  The 3 first level awardees received $150,000 each, the 3 second level awardees received $75,000, and the 3 third level awardees received $25.000.  These substantial awards were presented at a banquet and celebration held in honor of all the finalists.

Which teens won the 2016 science contest [1-4]? 

The First Place Medals of Distinction went to Amol Punjabi (17 years old; Massachusetts) for his project in “Basic Research”, Paige Brown (17 years old; Maine) for her research in “Global Good”, and, Maya Varma (17 years old; California) for her engineering development displaying much “Innovation”.  Full details about their research investigations, and, about the second and third place medalists, are available in the official Press Release at:  https://www.societyforscience.org/content/press-room/innovative-teen-scientists-win-more-1-million-awards-intel-science-talent-search .

All these teen awardees from many different schools in many different states show energetic work with creativity, individualism, and innovation on research projects involving diverse aspects of science.  Their success in researching is very commendable, and, it is easy to predict that each can help advance science and improve the world!

Do Science Talent Search prizewinners later enter science and do well at researching [1-4]? 

Many winners in this science contest go on to become professional scientists.  Some have become presidents of universities or big bosses of large corporations.  Several even have received a Nobel Prize for their later outstanding research accomplishments.  Obviously, the many Nobel Laureates who did not win a Science Talent Search award indicate that the qualities and capabilities needed to excel with scientific research also can be found in non-winners and non-entrants.

What does the Intel Science Talent Search do that is very good? 

This annual competition, under dedicated organization by the Society for Science and the Public,  produces several results that are most valuable for modern US society.  It (1) very effectively counters the false portrayal by Hollywood that scientists are weird or mad creatures who are only good for laughs, (2) gives all teen contestants a chance to learn to think for themselves and to move ideas into concrete objects and activities, (3) builds general enthusiasm among teens that science is interesting and is not just dry facts and figures, (4) encourages young people to find out more about careers in science, and (5) focuses attention of the public on research activities.  All of these are immensely important and so very wonderful!

Some critical comments about the Science Talent Search!

Considering the usual overemphasis on sports and entertainment in schools, substitution of memory for understanding in classrooms, and, general ignorance of what scientific research is all about, it is amazing that so many teens commit to working on a research project for this contest.  The enthusiasm demonstrated for science by these young people strikingly contradicts the reluctance of many recent college graduates to enter a graduate school for training to become a professional scientist.

The current job environment for university scientists is extremely different from the pleasant experiences these teens have by working on high school research projects.  I predict that many contestants going on to become professional researchers will choose to find satisfying work in industries or science-related jobs, instead of in academia.

Lastly, I would be remiss if I did not note that someone badly mis-categorized the excellent software project in “Basic Science” conducted by the First Place winner, Amol Punjabi; it isnot basic research, and clearly is applied research!

Concluding remarks!

It seems very obvious to me that the real winners of the annual Intel Science Talent Search competitions are all people in the public!  That includes you!

 

[1]  Brookshire, B.,  2016.  Teen scientists win big for health and environmental-cleanup research.  Available on the internet at:  https://student.societyforscience.org/article/teen-scientists-win-big-health-and-environmental-cleanup-research .

[2]  Society for Science & the Public, 2016.  Mission and history.  Available on the internet at:  https://www.societyforscience.org/mission-and-history .

[3]  Intel Science Talent Search, 2016.  Frequently asked questions.  Available on the internet at:  https://student.societyforscience.org/frequently-asked-questions .

[4]  Hardy, Q., 2016.  Intel to end sponsorship of science talent search.  The New York Times(September 9), page B1 (Technology).  Available on the internet at:  http://www.nytimes.com/2015/09/09/technology/intel-to-end-sponsorship-of-science-talent-search.html?_r=0 .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE

WHY IS IT SO DIFFICULT FOR EVERYONE TO UNDERSTAND SCIENCE? 

 

It is not so difficult for some people to understand science! (http://dr-monsrs.net)
It is not so difficult for some to understand science! (http://dr-monsrs.net)

 

Many people of all ages find it really hard to comprehend science and research!  Others even are afraid of science!  In this essay I will first present the causes and unfortunate consequences of this problem; then I will offer some ideas for countering its bad effects.

What causes the problem many adults have with reading and learning about science? 

This very widespread difficulty chiefly involves at least 4 different causes.

(1) POOR EDUCATION!  Most early instruction about science in schools only involves learning to regurgitate standard answers to standard questions.  Science courses in primary and secondary schools are largely superficial, descriptive, and mainly involve memorization.  Memory takes the place of learning and understanding, so interrelationships and reasoning are never presented.  Hence, schoolchildren don’t learn about research as the basis for knowledge, and mostly forget about science as soon as classes are over.

(2) THE STRANGE LANGUAGE OF SCIENCE!  Most people are separated from research and scientists by the vocabulary of science.  All 3 main branches of science (biology, chemistry, and physics) and each of their subdisciplines use specialized terms.  Scientists do speak strange languages!

(3) SCIENCE AND RESEARCH ARE ENTERTAINMENTS!  “Science news” is presented by most TV media as “gee-whiz entertainment”.  Research is seen as being amusing, and scientists are considered by Hollywood to be weird and funny creatures.

(4) SCIENCE IS MUCH TOO DIFFICULT FOR ME TO EVER UNDERSTAND!  Understanding science topics is viewed by many people as being beyond their capabilities.  Science has nothing to do with their personal lives, so why waste any time trying to understand it!

Effects of these problems with understanding science! 

Each of the foregoing causes directly creates some bad consequences.

(1) POOR EDUCATION!  Students soon conclude that science has no role in their personal life.  Definitions of key science terms are de-emphasized in school classes, and concepts often remain fuzzy; this readily leads to mistaken beliefs and wrong assumptions.

(2) THE STRANGE LANGUAGE OF SCIENCE!  Only a handful of special terms needs to be learned for understanding any aspect of science, but this task often makes adults give up even trying to read an article about modern science.  This effort is essential, just as one cannot read a story written in a foreign language until some vocabulary first is acquired!

(3) SCIENCE AND RESEARCH ARE ENTERTAINMENTS!  This is a very common belief, but nothing could be further from the truth!  The fundamental reason why scientific research is so important is usually not explained.  Today’s media are badly misleading people!

(4) SCIENCE IS MUCH TOO DIFFICULT FOR ME TO EVER UNDERSTAND!  This false belief probably is part of the “dumbing down” of the US public, and serves to intimidate many adults.  Even simplified materials on the internet will give a general understanding about science; dealing with math equations and learning lots of new terms are not necessary!

All these consequences reinforce each other!  The end result is that science, research, and scientists are totally estranged from people (see:  “On the Public Disregard for Science and Research” ), and are viewed as being utterly unimportant by most individuals (see:  “What Does Science Matter to Me, an Ordinary Person?” ).

Is there any good analogy to this very general problem for science? 

The answer to this question is, “yes”!  All the difficulties described above also are found with learning a foreign language!  Modern methods and tools for learning languages now are widely available, using recordings, educational media, computer programs for independent study, visits by native speakers, immersion experiences, etc.  Some of these will be beneficial for adults trying to read and learn about science.  Vocabulary is the first basis for learning any language, including the strange terms in science.  Without learning some new words, the languages of science cannot be understood.

If children would be better educated about science, then adults will not see it as being incomprehensible.  I have addressed defects in current science education for children earlier (see:  “What is Wrong with Science Education for Children?” ).  For science classes in primary and secondary schools, a short (30 minutes) illustrated guest presentation by a real live scientist (i.e., a “foreign speaker”) will add much interest and give a more realistic picture of science and research than can any textbook.

Other ideas for dealing with this common problem! 

I offer 3 additional recommendations to individuals trying to deal with their problem of being afraid of science and technology.  (1) Read first about small aspects and topics.  It isnot necessary to master some textbook for you to be able to understand brief media reports about science!   (2) When starting to read a newspaper article, look up a few definitions and diagrams on the internet; that is very easy and will aid your efforts to understand!  (3) Focus your efforts on current events in science, so you can jump beyond all the famous dead scientists and dry facts given in your earlier school textbooks and classes.  (4) Seek information about some topic in science and research that concerns you personally (e.g., your health, your wealth, your community (e.g., purity of water supply), your forthcoming vacation (e.g., ecology, plants and animals, local food, etc.), your shoes (e.g., nature of the improved materials used), your nutrition (e.g., good or bad, quantity, hidden chemical poisons), your automobile (e.g., electric cars, driverless vehicles, production of gasoline from oil), etc.

Concluding remarks! 

I believe the general problem that it is difficult to teach adults who find science too difficult can be made easier by copying some of the educational practices used to teach foreign languages.  Interactive teaching of both children and adults about how science is related to everyday life will help make the learning much easier.  Individuals must be encouraged to be courageous and overcome their fear of science; after success, most will agree that understanding science is not impossible, and even can be fun!

In conclusion, you are indeed capable of understanding science, and your life will become more interesting!  Give it a try!  Don’t put it off until later!  Try it today!  The very first step often can be the hardest (see: “How Can I Take the First Step to Learn About Science?” )!

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE

THE NEW JAMES WEBB SPACE TELESCOPE: BIG SCIENCE REQUIRES BIG MONEY AND BIG TIME, BUT SHOULD PRODUCE BIG RESULTS!

 

The new Webb telescope will be a big eye in the sky! (http://dr-monsrs.net)

The new Webb telescope will be a big eye in the sky!  (http://dr-monsrs.net)

 

NASA (National Aeronautics and Space Administration) and its many partners now are building a giant new space telescope, with launch scheduled for October, 2018 (see:“James Webb Space Telescope” at the NASA website).  The construction phase of theWebb space telescope involves efforts by over 1,000 special workers in 14 nations, a total cost of 80 billion dollars, and, many industrial and academic organizations.  This huge science project is being conducted during about 10 years of time; it involves use of new technologies and building several special new research instruments.  Once the complex assembly is completed and fully tested, it will be transported by ship to the rocket launch site in South America, where it will be sent far into space.  This new mission for science will provide important new research data for astronomy, astrophysics, and space science; its research results will go far beyond the amazing images and data obtained by the orbiting Hubble space telescope launched in 1990.

What is the Webb space telescope [1-3]? 

The new space telescope will be as large as a moving van and will be placed into a specific region of space located about one million miles away from Earth.  It contains small rockets to provide for final adjustment of its position.  Data collected from its newly constructed high-tech mirror systems provide very high sensitivity, increased optical resolution, and longer wavelength coverage.  This space instrument is specialized to detect and measure near- and mid-infrared wavelengths, since those come from the  oldest stars.  Data will be transmitted back to the Webb Science and Operations Center at the  NASA Space Telescope Science Institute in Baltimore, Maryland, for analysis and distribution to research scientists and groups.  The new Webb space telescope is planned to operate in the cold vacuum of space for 5-10 years, starting in 2018.

What will the new space telescope do for scientific research [1-3]? 

At present, the Webb mission has 4 goals: (1) search for the first galaxies or luminous objects formed after the Big Bang, (2) determine how galaxies evolved from their formation until now, (3) observe the formation of stars and their planetary systems, and (4) examine the physical and chemical properties of extraterrestrial planetary systems, including investigations of their potential for life.  The Webb extends the capabilities of the Hubble space telescope by having much better detection sensitivity (10-100x), optical resolution, and telescopic spectroscopy.  By being able to look out to the far edges of the universe, the Webb can view and measure the very oldest stars and galaxies.

What are the chief worries about the new space telescope [1-3]? 

As with any very complex and multiyear building project, unforeseen problems can arise later.  The Hubble space telescope had an unanticipated problem that fortunately was able to be nicely repaired by visiting astronauts.  Since the new Webb telescope will be much further away from Earth than is Hubble, it will be impossible for astronauts to fix problems.  Thus, the preflight testing must be much more rigorous and extensive.  However, it is never certain that everything will work and last exactly as expected; extremely unusual events could occur (e.g., collision with a large meteorite, very high bursts of different radiations from our Sun, malfunction of communication systems, etc.) and might be beyond the capabilities of adjustments during its operation in space.

Many people will ask a very natural question, “Why do we humans need a new space telescope?”.  Technical answers that it will give results beyond those provided by the Hubble space telescope, will have a hollow ring to non-scientists asking this question.  A better answer is that all of us, whether scientists or ordinary people, deserve to have extended knowledge and understanding about our universe; dramatic new data provided by the Webb space telescope will do just that.

Will the new findings of this space telescope justify its immense cost [1-3]? 

This huge research project raises an interesting general question about scientific research.  Although the 80 billion dollar budget for the Webb is cut back from the initial plans, just about everyone must admit that this cost figure is gigantic.  It is reasonable to expect that the research by space scientists using data from the Webb will produce significant advances in understanding the formation and evolution of the oldest stars in our universe, the life cycles of stars, the environmental composition of different exoplanets, and possibilities for living systems on planets circling other stars.

Although accepting that answer, some scientists will ask the logical question, “How many research grants of ordinary cost and size could be made with the same 80 billion dollars?”.  Their follow-up question will be, “What would be the value of the new research results collected by all those numerous small projects?”.  Clearly, such questions are simply the latest in the ongoing controversy about the value of Big Science versus Small Science.  Answers cannot be provided at present because so much is unknown or theoretical.

Where can good information be found about the new Webb space telescope?  

There is an abundance of information available about the design, construction, and objectives of the Webb space telescope!  For starters, see websites about the Webb byNASA , the Canadian Space Agency , and, the European Space Agency .  These have loads of information, diagrams, videos, and the latest news about this giant research project; they are designed to be suitable and understandable for adults, students, teachers, children, and parents, as well as for scientists.

You also even can sign-up with NASA to receive e-mail newsletters with the latest updates for the Webb space research project !

For those curious about the efforts of all the numerous engineers,  scientists, and technologists working with this space project, I recommend the truly outstanding article by Daniel Clery, “The Next Big Eye”, within the February 19, 2016, issue of the journal,Science.  This well-illustrated piece includes a very good discussion about how these individuals are subject to increasingly large pressures as the assembly and testing advances.

Concluding remarks! 

The work of designing, fabricating, assembly, and testing the different components used for the Webb space telescope is an utterly fascinating story showing what humans are capable of doing!  After the final assembly is completed, its testing under conditions of space while still here on Earth also will be a wondrous story.  Much credit must go to the managers who coordinate all the different small and large groups working on this complex assembly project at diverse locations; they must ensure that everything fits together and functions reliably just as planned.  The Webb mission should produce much exciting new understanding about our Sun, our universe, and conditions on the planets of other stars!

 

[1]  “Explore James Webb New Space Telescope” is available on the internet at:  http://www.jwst.nasa.gov .

[2]  “FAQ: General Questions About Webb” is available on the internet at:  http://www.jwst.nasa.gov/faq.html .

[3]  “Webb Telescope Science Themes” is available on the internet at:  http://www.jwst.nasa.gov/science.html .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE 

MORE SCIENCE Q&A FROM YOU TO DR.M, AND FROM DR.M TO YOU!

 

Asking questions, answering questions, and questioning answers are vital for education! (http://dr-monsrs.net)

Asking questions, answering questions, and questioning answers are vital for education! (http://dr-monsrs.net)

 

An earlier Q&A session with Dr.M drew a good response (see “Questions About Science From You to Me, and From Me to You!” ), so further interchange should be worthwhile for all visitors.

Dr.M, I’m no good at mathematics!  Can I read and learn about science without needing to use all the equations? 

The answer is “yes!”.  You can learn at a very basic level without needing any math.  Your knowledge then will be somewhat simplified, but that is okay.  As one example, look up a subject or question that interests you on any internet wikisite; you will receive simple descriptions, explanations, and figures, which will provide a basic level of understanding.  But, try to recognize that numbers and quantization are very necessary for doing science and research (e.g., consider the analogy of what would professional baseball be without batting averages and other statistical measures?).

Dr.M asks you: what do you know about how the internet operates?  How does your e-mail travel so quickly to another state or a different country?  How do viruses get into your computer? 

Although it is true that you can use the internet without knowing anything at all about computers, it will be much better if you understand at least the fundamentals.  It’s easy to use the internet to find out more about the internet!

Where can I learn about the big new Zika virus epidemic? 

Use any browser to search on the internet for “Zika virus epidemic” or “Zika virus research”, and you will receive many pages of sites with information.  If you feel that some background is needed, first look on a wiki for “virus” or “Zika virus”.  As a special treat, you can see a fascinating and shocking expose by J. Chatterjee about the old origin of this new epidemic at “What is the Zika Virus Epidemic Covering Up?” !

What do the Big Prizes in science matter to me, Dr.M? 

The several large Science Prizes provide a means for everyone to honor and learn about some really successful research scientists (see: “What Does It Take to Win The Big Prizes in  Science?” , and, “New Multimillion Megaprizes for Science, Part I” ).  Check out some video interviews with the winners on websites for the different prizes; you will see much about both their praiseworthy research work and  their individual personalities (i.e., yes, famous scientists are very interesting people!).

As a graduate student in science, I have decided that I do not want to work in a university!  What should I do to get a good science-related job in business/industry? 

You will need much more than learning about science and research, and you must take the lead in getting that info!  Take or just sit in on a beginning course for business or finance.  If possible, find someone who is now doing what you are aiming for, and ask if you can meet with them to ask a few questions about their job and career.  Some businesses offer short internships that will provide a taste of what working there would be like.  Spend some time thinking about the key difference between what you want to do, and what you would be willing  to do (i.e., could you work as an advertising staffer, computer maintainer, designer, manager, media consultant, salesperson, software writer, survey taker, telephone service agent, etc.)?

Dr.M, why do I as a taxpayer have to help pay for building giant new telescope facilities in Chile and Hawaii?  Those mean nothing to me! 

These gigantically expensive very special research facilities will yield new advanced knowledge about astronomy, astrophysics, and space science, that present telescopes cannot obtain.  These facilities are so very costly that they can be funded only by contributions from multiple nations.  The new research findings will help you only indirectly, by adding to understanding about our universe.  If you feel that your own tax money is being wasted, then you should realize that the portion you are giving to build these new telescope facilities is only a miniscule part of your tax payments; a much greater portion goes for wars and welfare ….. how do you like that?

Where can I find the very latest in new technology, Dr.M? 

I recently recommended several good websites covering this subject (see: “More Science and Research Websites Recommended for You!” ).

I just cannot understand why scientific research has not yet found a cure for either cancer or the common cold!  Please explain, Dr.M! 

You probably are ignorant that some of the many types of cancer now are being cured, thanks to modern research and clinical advances (see: “Progress for Treating and Curing Cancer!” , and, “A Very New Immunotherapy for Cancer Wins the 2015 Lasker-DeBakey Clinical Medical Research Award!” ).  The common cold is difficult to cure or prevent because the causative viruses are constantly mutating and changing; thus, a moving target must be knocked out, but it is impossible to predict where it will be (i.e., what the next mutation might be) before it has changed!

I’m a Full Professor in a science department at a large university, and I am forced to retire next year.  How can I keep doing research and publishing, Dr.M? 

If you are still able to be funded with a research grant, then you might be able to either stay at your present location as a resident researcher, or transfer to another institution as a visiting researcher.  If you don’t have a grant, see if you can find a well-funded colleague at another institution, who will let you work without salary in their lab on their research projects.  For the latter possibility, recognize that you need to be flexible; you might even want to work alongside someone who formerly was your biggest competitor!

Dr.M asks you: how many different ways can glyphosate get into your body?  How much do you now contain? 

Glyphosate is increasingly recognized as being a dangerous poison (see:  “What Happens When Scientists Disagree?  Part III: Is Glyphosate Poisoning Us All?” ).  If a farmer uses the weed-killer, Roundup (Monsanto Corporation), with his corn crop, and the harvested corn later is fed to chickens, how much glyphosate is ingested by humans when the chicken eggs or meat are eaten?  If farmers spread Roundup by aerial spraying, how much glyphosate then is present within the local tap water used for drinking or cooking?  How much glyphosate is present inside you or other people today?  Dr.M says that much more research should be done to answer these worrisome questions!

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE 

ARTUR FISCHER WAS A VERY SPECTACULAR INVENTOR! 

 

Quotations from the late inventor, Artur Fischer! (http://dr-monsrs.net)
Quotations from the late inventor, Artur Fischer!   (http://dr-monsrs.net)

 

I have previously written about such great inventors as Thomas Edison, Nikola Tesla   and Edwin H. Land (see: “Inventors & Scientists”, and, “Curiosity, Creativity, Inventiveness, and Individualism in Science”).  Inventors generally are seen as being separate from scientific researchers or engineering developers, but all these people often have some of the same personal features, such as creativity, curiosity, drive to overcome difficulties, problem solving ability, and, recognition of causes and effects.

A prominent lifelong inventor in Germany, Artur Fischer, just passed away at age 96 and was the holder of over 1,100 patents [1-3].  That number is even greater than the giant number of patents held by Edison!  Although every person reading this is using his inventions, almost nobody can name their discoverer!  I will briefly describe his inventions and career below, so all of you can appreciate his wonderful human spirit.

Life activities of a great inventor!  [1-3]

Born in a small town within Germany in 1919, Artur Fischer was educated in primary school followed by entrance into a vocational school.  He stopped that and then began an apprenticeship with a locksmith at age 13.  He never acquired a high school diploma, and it now is very obvious that he certainly did not need one!.  Following military service in WW2, he returned home in 1946 and worked on small devices for an engineering company.  At age 29 the young entrepreneur started his own company (see:http://www.fischer.de/en/Company/About-fischer ).  Today, the resulting Fischer Group of companies is a very innovative, successful, and large German business employing over 4,000 people, having many subsidiaries and factories in Germany and other countries, and, marketing thousands of products around the world (see:  http://www.fischer.de/en/Company ).

Throughout his life, Artur Fischer liked to think and do in a workshop, which served as his laboratory for experimentation.  His mother  had helped him set up a small workbench, thereby encouraging his early efforts.  His father was a tailor.  Typically, Fischer began his inventions by recognizing some practical or technical need or problem, and then visualizing what changes would accomplish the desired functional solution.

His first big invention involved something every photographer today takes for granted: the burst of light from a camera flash is timed to coincide with the opening of the camera shutter.  In the earlier days of photography that was not the case.  He invented a new method enabling this flash synchronization, and thereby finally obtained a flash photo of his infant daughter, and acquired his first patent (1949); that effort brought him much business success.  He went on to apply this inventive approach to making improvements in a very wide variety of different objects (e.g., a universal holder for boiled chicken eggs that can accommodate a wide range of sizes, edible building blocks for use by very young children, educational toys, etc.).

His best known invention answered a very common question: how to attach screws into  drywall or masonry?  He came up with a new kind of compressible non-rotating plastic plug that was inserted into a small hole drilled in the wall; a screw then was worked into the inserted plug, causing that to expand so the screw became very firmly anchored.  This revolutionary development in 1958, officially known as a Fischer screw anchor, is also called a wall plug, S-plug,  dowel, or wall anchor.  These fasteners are commonly used in construction and by just about everyone (i.e., to hang a picture or attach a shelf onto a wall).  Millions of nylon screw anchors needed for this method now are made by mass production machines every day; they are widely popular everywhere because they are inexpensive and easy to use, work well, and come in a variety of sizes.  Wall plugs continue to be developed further and now even can be made from green materials!  Artur Fischer also developed modified versions of his wall plug that now are used by orthopedic surgeons to hold broken bones together while they heal (i.e., one really good invention often leads to others!).

Artur Fischer later established Fischertechnik, a new division in his thriving company (see:http://www.fischertechnik.de/en/home.aspx ).  Very many children all around the globe know about the special construction toys produced and sold by this business.  Although appearing to be similar to toys, these go far beyond that label and require assembly by the child before it can be used; there are various technical components that each young owner can add to their constructed toy.  Thus, much hidden education is provided within these distinctive products (e.g., designing, dynamics, electrical engineering, mechanics, robotics, software, solar energy, etc.).  They appeal to all modern boys and girls, but also are fascinating for adults to use!

Most recent events!  [1-3]

For his long career as a tinkerer and prolific inventor, Artur Fischer recently was honored by the European Patent Office with the 2014 European Inventor Award for his lifetime achievements.  The family-owned Fischer Group companies has been headed and expanded since 1980 by his son, Prof. Klaus Fischer; this large enterprise now is headed by the third generation grandson, Joerg Fischer.

Artur Fischer has just died, on January 27, 2016.  So that you can get to know a little about this remarkable inventor and see how he thinks and works, I recommend watching 2 brief videos.  First, view a 2014 instructive video, “Artur Fischer in His Own Words – Winner of the European Inventor Award 2014”; here, he tells how he invents and works (with captions translated into English).  Second, watch a 2014 UK video describing his career activities, “Artur Fischer – Wall Plug, Synchronized Flash, and Many More” .

[1]  European Patent Office, 2014.  Artur Fischer (Germany).  Available on the internet at: https://epo.org/learning-events/european-inventor/finalists/2014/fischer.html .

[2]  Grimes, W., Feb. 8, 2016.  Artur Fischer, Inventor With More Patents Than Thomas Edison, Dies at 96.  The New York Times, International Business, page B12, available on the internet at:  http://nytimes.com/2016/02/09/business/international/artur-fischer-inventor-with-more-patents-than-edison-dies-at-96.html .

[3]  Obituaries, Jan. 28, 2016.  Artur Fischer, inventor – obituary.  The Telegraph (U.K.), available on the internet at: http://www.telegraph.co.uk/news/obituaries/12140534/Artur-Fischer-inventor-obituary.html .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE

WHAT DOES THE NEW NATIONAL SCIENCE FOUNDATION REPORT SAY ABOUT BIG PROBLEMS FOR US SCIENCE? 

 

SEI 2016 shows current status of scientific research and engineering developments in the US and other countries! (http://dr-monsrs.net)

SEI 2016 shows current status of scientific research and engineering developments in the US and other countries! (http://dr-monsrs.net)

 

The 2016 edition of the extensive and impressive serial report from the National Science Foundation (NSF), Science and Engineering Indicators 2016 (SEI 2016), has just appeared (see: “National Science Foundation Issues New Report on Status of Science, Engineering, and Research” ).  This large document purposely does not directly comment or interpret its figures; however, provision of these data by SEI 2016 leaves their interpretation open.  In this essay I will briefly examine what the new data in SEI 2016 say about several controversial topics and modern problems for science.

The SEI 2016 is available at: http://www.nsf.gov/statistics/2016/nsb20161/#/report , and its brief commentary, The Digest 2016, is available at: http://www.nsf.gov/statistics/2016/nsb20161/#/digest .  An excellent search page for SEI 2016 is provided at:  http://www.nsf.gov/statistics/2016/nsb20161/#/topics/ .  Citations in the following text all refer to SEI 2016, unless noted.

What is the present status of science and engineering in mainland China?  Could China surpass the US in science and engineering? 

Mainland China now is an extensive political and economic competitor with the US.  Many have the impression that the quality of Chinese science and engineering formerly was deficient, but now has improved and is nearing the level prevailing in other countries, including the US.  SEI 2016 shows that in 2013 the US workforce produced 27% of worldwide research and discovery, while China produced 20% [The Digest 2016, page 4].  Much research and development in China now aims to advance their military, technical,  and industrial capabilities; these efforts strongly depend on Chinese engineering.  Their increasing number of engineers is expected to start producing more science and engineering articles than will the US in 2014 [The Digest 2016, Figure A on page 13].  Since 2005, China already has produced more engineering publications than any other country [The Digest 2016, Figure B2 on page 13].  It seems likely that China’s efforts to advance education and training of their scientists and engineers will stimulate achieving equivalence and then soon will surpass the US output.  Hence, SEI 2016 shows that the US is likely to soon lose its premier status for science and engineering!

What does SEI 2016 say about the funding for basic research, which necessarily precedes what is done later by applied research and engineering developments?  

Data in SEI 2016 deals with both the basic and the applied aspects of research and development.  Excluding money for the Department of Defense, federal support of research in 2013 is given as 45% for basic studies, 41% for applied studies, and 14% for development [Figure 4-12].  I must disagree with their assumption that the many studies funded by the National Institutes of Health all are basic research; thus, I cannot accept the total for basic research given in SEI 2016 as being valid (i.e., definitions of basic versus applied are not provided).  I and many academic scientists are convinced that federal support for basic research has been diminishing, while federal grants for applied research are increasing in number.

What do the figures in SEI 2016 say about the pervasive problem of  hyper-competition for research grants between university scientists? 

Acquiring and maintaining an external research grant now is the major goal for faculty scientists.  At present, there is a vicious hyper-competition between all academic scientists for research grant awards (see: “All About Today’s Hyper-competition for Research Grants” ).  University scientists cannot be blamed for this very problematic situation  because if they do not acquire and hold research grants then they are basically dead.  The SEI 2016 does not directly address the destructive effects of hyper-competition on academic science.   However, the published data do show that only 19% of all applications for research grants from the National Institutes of Health, the largest federal agency making grants for biomedical research, were funded in 2014, and the trend for such funding is decreasing [Table 5-22].  Furthermore, SEI 2016 shows that the total number of doctoral scientist holders working in academic institutions continues to  increase [Appendix Table 5-13], meaning that the numbers of applicants and applications also are rising.  Thus, SEI 2016 documents that the hyper-competition for research grants keeps getting even more severe every year!

What do the new figures in SEI 2016 say about the predicted demise of science and research in modern US universities?

My earlier controversial proposal that university science now is dying (see:  “Could Science and Research Now Be Dying?” ) was based upon my impressions of a declining quality of modern science, large wastage of time by researchers struggling to get more and more research grants, conversion of university research into a business entity where money is everything, de-emphasis on basic research and corresponding increased emphasis on applied research, and, increasing corruption by professional scientists.  That situation is being caused by bad policies and priorities from both modern universities and the current research grant system.

SEI 2106 shows oodles of data that almost everyone will conclude is very solid evidence denying my prediction (i.e., since academic science in the US is doing such a productive job and provides so much of value to the public, then all must be excellent!).  I disagree, because the quality of research studies and publications seems to be decreasing!  The data in SEI 2016 almost entirely are measuring research quantity and largely ignore quality.  The Digest 2016 emphasizes that innovation is very important, and I agree; however, innovation is not measured or estimated for basic versus applied research, which is very necessary in order to evaluate their value.

If everything actually is so very wonderful with modern science in academia, then why are an increasing number of faculty scientists, postdocs, and prospective domestic graduate students so dismayed and dissatisfied?  Why have the number of doctoral scientists and engineers working as full-time faculty members been progressively declining?  Why did only 15.6% of all employed doctoral scientists and engineers work in academia/education in 2013 [Table 3-6]?  Why did 28.1% of all doctoral scientists and engineers now work outside business/industry in 2013 [Table 3-6]?  Why did 20% of all US doctoral scientists and engineers report that they  were working out-of-field because of a change in career or professional interests in 2013 [page of text following Table 3-14]?  All of the above data from SEI 2016 support my controversial proposal!

Conclusion!

It is fair to conclude that SEI 2016 indeed is very useful, but will not answer all the important questions  about modern science!

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE

 

NATIONAL SCIENCE FOUNDATION ISSUES NEW REPORT ON STATUS OF SCIENCE, ENGINEERING, AND RESEARCH! 

 

SEI 2016 shows current status of scientific research and engineering developments in the US and other countries! (http://dr-monsrs.net)
SEI 2016 shows current status of scientific research and engineering developments in the US and other countries!   (http://dr-monsrs.net)

The National Science Foundation (NSF) has just released an extensive report, Science and Engineering Indicators 2016 (SEI 2016).  It presents the latest figures and trends about the status of scientific research and engineering development in the United States (US) and elsewhere in the modern world; the complete data presently extend through 2013 or 2014.  This very large document is available to all on the internet at: http://www.nsf.gov/statistics/2016/nsb20161/#/report .  Its accompanying short commentary, The 2016 Digest, is available at:http://www.nsf.gov/statistics/2016/nsb20161/#/digest .

In this article, I will first describe what SEI 2016 is and how it is important.  Then, I will briefly discuss a few important aspects of the newest data from SEI 2016.  These topics are selected because they have widespread general interest, and are very essential starting points for understanding today’s science in the US.  Citations in the following text all refer to SEI 2016, unless noted.

What is SEI 2016? 

New editions of this documentation are prepared every 2 years by the NSF National Center for Science and Engineering Statistics under guidance of the NSF National Science Board. SEI 2016 presents many quantitative data, tables, and charts about science, engineering, and research in the US and the world.  The new volume is the 22nd in this series and so readily enables good comparisons with past figures.  Its chapters deal with: (1) elementary and secondary mathematics and science education, (2) higher education in science and engineering, (3) science and engineering labor force, (4) national trends and international comparisons for research and development, (5) academic research and development, (6) industry, technology and the global marketplace, and, (7) public attitudes and understanding of science and engineering.

The contents of SEI 2016 are presented for other people to use!  This avoids any need to guess about quantities, comparative figures, or trends.  Mostly it does not include interpretations, discussions of policy issues, or opinions about the data given.  Copies of this biennial report are distributed to the President, Congress, and many high officials involved with science and engineering.

Neither members of the public, nor scientists and engineers, are likely to try to read through all the numbers in tables and charts of SEI 2016!  Instead, they can either (1) read through the short commentary version offered as “The 2016 Digest” (see URL given above), whose PDF version contains only 14 pages of text and 7 pages of figures, or (2) look up specific sections having information about topics of personal interest (see “Search by Topic or Keyword” at:  http://www.nsf.gov/statistics/2016/nsb20161/#/topics/); for the general reader, I believe the best approach is to use this excellent search page.

Some important basic questions are answered in SEI 2016! 

(1)  How many scientists and engineers now are working in the US?  How many are unemployed?  SEI 2016 lists a total of 23,557,000 persons working on some aspect of science and engineering who were employed in the US during 2013 [Table 3-6].  For 2013, 6.7% of all scientists and engineers were working involuntarily on something out of their field [Table 3-14], and less than 4% were unemployed [Appendix Table 3-18].  For all graduate students in science during 2013, 25% study engineering [Table 5-19].

(2)  How many doctoral scientists and engineers are working in industry, and how many work in academia?  What is the trend for academic employment of scientists and engineers?  In 2013, 70.1% of all employed doctoral scientists and engineers were working in business/industry, 15.6% were working in academia/education, and 12.5% were working for federal, state, and local  governments [Table 3-6].  Holders of a doctoral degree in science or engineering who worked as full-time faculty members declined to 70% in 2013.

(3)  What were the salaries for doctoral scientists and engineers working as postdoctoral fellows, members of a science faculty 5 years after graduating, or staffing industries 5 years after graduating?  The median salary for all postdoctoral fellows working on research or development in the US was $45,000 in 2014 [Table 3-18].  Excluding physicians and dentists, the median salary for all doctoral scientists and engineers working at academic institutions (at 4-5 years after graduating) was $85,530 in 2014; the corresponding figure for all engineers in academia was $94,250 [Table 3-13].  Median salaries for doctoral scientists and engineers working in the business sector during 2014 generally are higher than those working in academia.

(4)  What portion of doctoral scientists and engineers working on research or development in the US were born in foreign lands?  What portion of postdoctoral research fellows currently researching in the US were born in foreign lands?  How are these figures changing?  SEI 2016 shows that science and engineering in the US continue to have a large input of workers born in foreign lands.  For postdocs in 2013, this figure was almost 50% [Figure 5-19]; for these foreign-born postdocs, Asians and Pacific Islanders were nearly 70% of the total [text following Table 5-19].  All these figures are trending somewhat higher; in 2013, the number of total scientists and engineers born in foreign lands has grown to 27% [Figure 5-19].

(5)  What portion of faculty scientists and engineers applying for a federal research grant currently get funded?  How is this figure changing from earlier years?  SEI 2016shows that only 19% of all applications for research support from the National Institutes of Health, the largest federal granting agency for biomedical research, were funded in 2014 [Table 5-22].  The trend for funding in the period from 2001 through 2013 shows a progressive decrease [Table 5-22].

(6)  How does the US compare with other nations for the total amount of money invested to support science and engineering activities performed in the US?  In 2014, the US government spent over $132 billion to support all research and development by scientists and engineers [Figure 4-17].  Defense expenses for research and development accounted for 52.7% of that total [Table 4-17].  For the same period, US industries spent over $322 million for business research and development [Table 4-7].

Concluding discussion! 

SEI 2016 is a most valuable and extensive documentation for anyone seeking facts and figures about modern science and engineering.  It furnishes a very useful means to evaluate the present status of scientific research and engineering development in the US and other nations, and to recognize current trends.  Clearly, it shows that both the US government and US industries spend lots of money on science and engineering activities; most of these billions of dollars come from US taxpayers, who then receive both new knowledge and new commercial products!

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE

INSPIRATION AND PERSPIRATION IN SCIENTIFIC RESEARCH!

 

Inspiration and perspiration help make research progress! (http://dr-monsrs.net)
Inspiration and perspiration both help scientists make more research progress!    (http://dr-monsrs.net)

 

One of my distinguished and very ambitious professors in graduate school jokingly told me that his notable success for accomplishing a certain research effort was “more due to perspiration than inspiration!”  Those 2 factors always play important roles for the work of all research scientists.  I now will explain this so that all non-scientist readers will understand how and why this is so.

What is inspiration for scientists?  How does it work?

Inspiration is a quick mental process resulting in an unexpected new idea or thought that clarifies or advances something.  With inspiration, all of a sudden some relationships or difficulties become crystal clear and fully understood.  It typically is not frequent, and comes out of nowhere.  For researchers, an inspiration might set off a chain of other thoughts; thus, it can provide stimulation for further mental activities.  It often results in seeing connections that were not visible before, and hence can stimulate new directions.  Inspiration is not just an ordinary new idea, but often provides insight and new understanding.  Undoubtedly, some of the creative products from inventors arise due to inspiration.  To the best of my knowledge, nobody knows what sets off an inspiration; it could even be cosmic rays!

Inspiration has occurred to me mostly while waking up or in the nightly shower.  When inspiration happens, it is seen as being magical because it seems to appear without conscious intention.  If inspiration occurs at the time when you are just waking, it is very essential to immediately write down the new thoughts; if that is not done, they very rapidly become unavailable no matter how hard one tries to recall them later.  My own observations lead me to conclude that inspirations often are situated right at the border between unconsciousness and consciousness; at their time of origin, there seems to be much less restriction against thinking new and unusual thoughts or realizing new connections and relationships.

What is perspiration for scientists? 

Perspiration is a physiological result of hard work that is evident as sweating.  Working at research demands persistent efforts, focused attention to details, practical skills, and determination to overcome any failures; only a commitment to strong personal work can produce successful outcomes for research projects.  Hard work for research scientists involves a variety of both mental and physical efforts, usually necessitates working for long hours, and is accompanied by some perspiration.  Sweating correlates particularly well with  difficult efforts, and has a purely subconscious origin; it is valuable not only for keeping body temperature from getting too high, and also serves to identify work that requires strong exertions.

How do inspiration and perspiration interact with research scientists? 

For working on research investigations in laboratories or in the field, both inspiration and perspiration are very useful!  Both can overcome practical problems (e.g., finally getting a new experimental protocol to work after having many failures, constructing a good new concept to explain a set of unexpected data, modifying and developing a new method or instrument in order to be able to collect data that answers a research question, etc.).  Perspiration is especially useful for researchers because working harder always is available to help advance a research project; if you are not sweating, then you are not working at your maximal level!  Inspiration is particularly valuable for researchers because it can save time by jumping over some problematic situation, or penetrating a mental blockade.

Inspiration and perspiration can be found in all types of people, and all readers should be able to see both in action at their own workplace.  In my opinion, the necessity for hard work can be taught to research scientists, but inspiration is not able to be taught; I believe inspiration is an inborn trait.  Since it is not voluntary, one can only be aware of inspiration after it happens, and be ready to use it when it appears.  I see inspiration as being similar to creativity in that both are inherent mental capabilities; some people certainly are borne with much more than others have.

Conclusions! 

Perspiration from physical and mental activities often accompanies making a research project progress towards completion before a deadline.  Inspiration can help scientific research by jumping over or around some problematic point in the progress of a study.  Science and research clearly benefit from both inspiration and perspiration!

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE

 

PROGRESS FOR TREATING AND CURING CANCER!! 

 

Cancer definitely is "The Big C" for many patients, doctors, and researchers! (http://dr-monsrs.net)

Cancer definitely is “The Big C” for many patients, doctors, and researchers!           (http://dr-monsrs.net)

 

The latest annual report from the American Cancer Society (ACS) surveys cancer in many years up to the present, and provides statistical data about the current status of neoplastic disease in the United States (US) [1,2].  The largest conclusion is that clinical progress against cancer definitely is being made, but further efforts are needed.

ACS cancer statistics for 2016 [1,2]! 

The new ACS report describes numbers for cancer incidence, deaths, and survival through 2015 [1,2].  These latest figures permit comparison to corresponding measurements for many previous years, and allow predictions to be made for 2016.  Several brief discussions about what these figures reveal now are available [e.g., 3-5].

The cancer death rate for men and women fell 23% in the 21 year period from 1991 to 2012 (the latest year for which complete data are available).  This progress should be  welcomed by everyone!  Death from cancer still is second to heart disease for the entire US, but in 21 states it now has become the leading cause of death due to use of new and better therapies against heart disease.  For 2016, around 1.7 million new cases of all cancers can be expected in the US, presumably due mainly to the many environmental carcinogens we all are exposed to.

Cancers of the lung, prostate, colon, and breast remain the most frequent neoplasms nationally, and result in nearly half of the cancer deaths for both genders.  The total incidence of cancer would be higher were it not for decreased smoking of tobacco products.  Despite all measures now taken for early detection, breast cancers in women are estimated to be about 29% of all new cancer cases for females in 2016.

Incidence and death rate for some cancers are decreasing [1,2]! 

New cases of several cancers now are decreasing.  Half of the decline in new cancer cases for men is caused by the reduction of reporting prostate cancer by clinicians; this is due to their recognition that the prostate specific antigen test for the presence of prostate cancer gives positive results even for those men not needing clinical treatment.  Observed decreases in new lung cancer patients are due to the increased numbers of men and women who choose not to smoke tobacco; of course, many people still smoke, and the incidence needs to be reduced much further.  The observed decrease in colon cancer is believed due to increased use of colonoscopies as an effective screening test.

Better treatments and high levels of enrollment in clinical trials is producing a progressive increase in 5-year survival rate for children with cancer.  Among children aged 1-14 years in the US, death from cancers is second only to the deaths caused by accidents. Leukemias account for 30% of all childhood cancers, but brain cancer now is more frequent than leukemia due to more effective therapies for treating this blood cell cancer.

Is progress truly being made in fighting cancer [1-5]? 

Despite continuing complaints that too much money is spent on treating and studying this deadly disease, progress against cancer in the US clearly is being made every year.  Education, early detection, prevention, and improved therapy all contribute to decreasing the incidence and death rates, thereby raising the number of cancer survivors.

Hidden among the tables of numbers published in the new ACS report is the solid fact that for some cancer patients death now is postponed for many years due to the development and use of more effective therapeutic treatments.  Moreover, of the more than 100 different kinds of cancer, some now are being cured!  Both of these facts provide evidence that progress in cancer care indeed is being made.

Critical discussion about the value of cancer research! 

One of the most frequent complaints about spending many billions of dollars on cancer research is that this killing disease still remains without a general cure (see: “After Spending Billions Why Have Scientists Not Yet Found a Cure for Cancer?” ).  A very strong rebuttal to this complaint is given by the thrilling research success of Dr. James P. Allison (M. D. Anderson Cancer Center, Houston, Texas) (see: “A Very New Immunotherapy Wins the 2015 Lasker-DeBakey Clinical Medical Research Award!” ).  His combined laboratory, clinical, and industrial research investigations with experimental immunology discovered a new kind of treatment that cures many cases of the previously fatal cancer, malignant myeloma (see new video: “Why Don’t Our Bodies Fight Cancer for Us?” ).   This story proves that research does result in very wonderful advances in curing some cancers!

This dramatic example of research success also illustrates several important generalizations about research on cancer: (1)  progress in treating and curing cancer proceeds step-by-step and not all-at-once, (2) basic laboratory research is the major basis leading to clinical progress against cancer, and, (3) progress in curing any type of cancer is inherently slow and takes at least one decade of dedicated work, but it is pursued by determined basic and clinical researchers.

Due to advances in cancer research, a diagnosis of cancer no longer is a certain prediction of early death!  Cancer research is the biggest stimulus for clinical progress against this disease.  The President of the American Society of Clinical Oncology, Dr. Julie M. Vose, has just stated [5], “As a result of our nation’s investment in cancer research, we have made tremendous progress in prevention, chemotherapy, surgery, radiation, immunotherapy and molecularly targeted treatments.  Every cancer survivor is living proof of its progress.”

Concluding remarks! 

This 2016 ACS report [1] documents the considerable progress being made against cancer.  An increasing number of patients with certain types of cancer now even are being cured!  Cancer research does cost lots of money and typically takes many years of work, but that leads to development of good clinical progress against this disease (i.e., decreased incidence, increased survival, and outright cures)!

 

[1]  Siegel, R.L., Miller, K.D., and Jemal, A., 2016.  Cancer statistics, 2016.  CA: A Cancer Journal for Clinicians,  6:7-30 .

[2]  Simon, S., 2016.  Cancer statistics report: death rate down 23% in 21 years.  Available on the American Cancer Society website at: http://www.cancer.org/cancer/news/news/cancer-statistics-report-death-rate-down-23-percent-in-21-years .

[3]  Mulcahy, N., 2016.  Continuous decline in US cancer death rate: ACS report.  Available on the internet at: http://www.medscape.com/viewarticle/856938 .

[4]  MedlinePlus, 2016.  Cancer death rates down 23 percent since 1991: Study that translates to an additional 1.7 million survivors, expert says.  Available on the internet at: http://www.nlm.nih.gov/medlineplus/news/fullstory_156576.html .

[5]  Julie M. Vose, 2016.  Decline in cancer deaths result of decades of advancing cancer care.  Available on website of the American Society of Clinical Oncology at: http://www.asco.org/advocacy/decline-cancer-deaths-result-decades-advancing-cancer-care .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE

RESEARCH GRANTS CAUSE BOTH JOY AND DESPAIR!

 

The Yin and Yang of Research Grants in 2016! (http://dr-monsrs.net)
The Yin and Yang of Research Grants in 2016!  (http://dr-monsrs.net)

The public often forgets that scientists are people, too!  Your neighbor that you never say more than a “hello” to might even be a scientist!  Most readers have no idea what emotions arise in professional scientists working on research at modern universities.  So that you will learn more about scientists as people, this article looks at the strong emotions commonly caused by the research grant system.

Introduction! 

Officially, research grants pay for all the many different expenses of conducting experiments, and thus provide the essential financial sponsorship all scientists at universities need to obtain in order to (1) conduct research, and (2) keep their employment.  Without a grant, university scientists lose their laboratory, have their salary lowered, reduce their status, and are not promoted.  Research grants now are the difference between life and death for a faculty scientist’s career!  When scientists at universities cannot renew their research grant(s), this typically causes a career crisis that can necessitate either a major shift in job activities (e.g., into full-time teaching and/or administration) or relocation to a new employment.  Getting and maintaining research grants is the very largest goal for any faculty scientist; that target now far overshadows making breakthrough discoveries, publishing in the very best journals, and receiving a prize for meritorious teaching.

Feeling the rewards and problems of funding science with research grants! 

Receipt of official notice that a research grant application will be funded causes great joy and excitement for any faculty scientist.  All of a sudden, the 6-24 months of planning, writing, and revising the proposal seem worthwhile, rather than being burdensome and wearying!  Graduate students and research technicians now can be kept employed in the lab, and there will be time to finish some long experiment!  Sometimes a new piece of research equipment can be purchased, or a postdoctoral fellow can be added to the laboratory team!  A big celebration of this bountiful feast of happiness and satisfaction clearly is in order!

However, research grants are a double-edged sword for university scientists!  Very difficult problems frequently accompany research grant awards and these can cause great distress and anguish.  A few weeks or months after receiving a new grant, the euphoria wears off and the same scientist again becomes aware of the big problems all faculty scientists face with time and money.  After the initial joy, the second emotion to arise is fear!  Fear of what?  Fear of the fact that the clock is always ticking, and fear of the future!  While one is busy hiring and training a new technician, interviewing candidates for an open postdoctoral position, composing a manuscript, dealing with installation of a large new piece of research equipment, teaching in a class with 3 or 300 students, and, doing bench work in the lab, the clock always is counting down the remaining time before important deadlines occur (e.g., sending an annual report to the granting agency, the remaining time left in year-02, getting a large article published, submitting an application for renewal of the current grant at the best time, completing an application for a new (additional) grant now rather than later, etc.).

With regard to the time problem, each grant demands forms to be filled out, reports to be submitted, hours to be scheduled away from the lab, and deadlines to be met.  New lab employees need to be evaluated and then trained.  In addition to time needed for paperwork, administration, bench work in the lab, lab meetings, office hours for class students, and teaching work, the main time demand for all faculty scientists today is to submit more and more applications so multiple research grants can be obtained; the enormous pressures generated by this time crunch will have strong effects upon any human.  For most university scientists, acquiring multiple grants can result in such a large time shortage that there no longer is so much fun with personally working at their research; that stimulates the emotions of despair and depression!

Receipt of another research grant theoretically should solve the money problem for any university scientist.  Instead, the new dollars often have the opposite effect!  The university might suddenly raise the official salary levels for all employed technicians or graduate students; since the required increase was not included in the proposed budget, this obligation must be paid by those funds awarded for research supplies.  Buying a new research instrument might require changing the electricity supplies and remodeling to create a surrounding barrier zone; the grantee must pay for all that work, meaning more rebudgeting.  How then will new supply orders be paid for?

Feasting can be followed by a famine! 

Many applications for a research grant are not funded or only partially funded.  Sooner or later, even famous university scientists fail to have their research grant renewed.  Faculty scientists losing a research grant typically try very hard to get funded again via a revised application or a new application for a different project.  All science faculty losing their single research grant are facing the kiss of death, where they can lose everything; the unlucky scientist enters a period of true famine. That university scientist then finally becomes very aware that they only have rented their laboratory space, that their research accomplishments mean little to their university, and that their employer really hired them only to get their grant money (i.e., more profits!).  Trying to alternate back and forth between the conditions of feast and famine is an  emotional situation which is quite sufficient to cause premature aging!  Unfunded, but previously funded, faculty now are labelled as being “worthless” by their academic employer; feelings of anger, tearful sorrow, and dissatisfaction certainly flourish.  Emotions with feast-or-famine undergo a roller coaster ride!

Concluding discussion! 

Problematic features of the current research grant system for supporting scientific research at universities very clearly have emotional consequences.  Both happiness, sorrow, disgust, and endless worrying commonly are produced.  Having 2 or even 3 research grants can simply magnify the same emotions.  Living and working under the condition of feast-or-famine wears academic scientists down and does not encourage the progress of science.

Science has good involvements with business and commerce, but basic research itself is not supposed to be a business!  Research grants or other financial support are necessary to pay for all the expenses of conducting experiments, but obtaining more and more of that money is not the true goal of scientists!  For modern universities, science is a business, and faculty scientists are just a terrific means to increase their profits!

There are some other ways besides grants to pay for research expenses (see: “Is More Money for Science Really Needed? Part II” , and, “Basic Versus Applied Science: Are There Alternatives to Funding Basic Research by Grants?” ).  It seems to me that new mechanisms for financing science and research at universities in the United States now are badly needed in order to stop the destructive problems caused by the current system (see:  “Could Science and Research Now be Dying?” ).

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE

 

LET’S FINISH 2015 WITH A HAPPY NOTE!

 

MC&HNY

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE 

IS MORE MONEY FOR SCIENCE REALLY NEEDED? PART II.

 

What research gets federal support? Many other recipients are not shown here, and slices of this pie chart do not total 100%! (http://dr-monsrs.net)
What research gets federal support? Many other recipients are not shown here, and slices of this pie chart do not total 100%! (http://dr-monsrs.net)

Every year there is a storm of activity in Congress and the public media about how much money should be appropriated for federal support of science. These activities result in a never-ending upward spiral demanding more and more dollars for research grants. My opinion is that there already is plenty of money for science, and additional funding is not needed!

Since almost nobody except all the taxpayers will agree with my position, this essay examines this critical issue. Part I considered arguments about whether increased funding is, or is not, needed (see: “Part I” ). Part II now discusses several possible changes to increase the amount of dollars available for research support without needing to mandate any increased taxes. Yes, that is feasible! Throughout both parts of this essay I am referring specifically to faculty scientists researching in universities. Background can be found at “Introduction to Money in Modern Scientific Research”, and “Money Now is Everything in Scientific Research at Universities”.

Introduction!

It is a simple fact that there is not sufficient money today to fund research by all the science faculty members at universities. Taxpayers should not be asked to pay higher taxes since they already are paying too much! The only solutions considered for this annual financial problem always are centered on increasing the dollars available for research grants. No-one seems to be examining any alternative and unconventional ways to generate more dollars for scientific research! This article examines 2 direct and effective ways to do that.

The amount of money available to support research can be increased by (1) greatly reducing waste in research grants, and (2) progressively reducing the number of new scientists!

Wastage of research grant awards now is solidly built into both the current research grant system and the universities receiving grants. On the surface, all expenses for any grant-supported project are officially scored as fully justified; in practice, many expenditures either are not spent for actually doing research, or are duplicated, excessive, and unnecessary (see: “Wastage of Research Grant Money in Modern University Science” ).

Another large waste of research grant funds is found in the indirect costs. These expenses are very necessary to pay for cleaning, garbage service, painting, etc., but somehow can be more than 100% of the direct costs for buying test-tubes and running experiments.  Indirect costs are uniquely paid by science faculty with research grant awards; non-science faculty in the same universities usually are not asked to pay for the indirect costs of doing their scholarly work. Thus, my view is that payment for indirect costs by research grants to university scientists is not warranted and wastes grant funds. Nevertheless, the federal granting agencies and universities both approve of this! This peculiar arrangement arouses suspicion that its real purpose is not research support, and must be some hidden objective (see: “Research Grants: What is Going on With the Indirect Costs of Doing Research?” ).

Although everyone can see that there are too many university scientists to be supported with the funds now available,  the production of yet more new science PhD’s every year  directly increases the number of applicants for research grants! In my view, this is crazy, and there now are too many faculty scientists (see: “Does the USA Really Need so Many New Science Ph.D.’s?” )! The number of grant applications submitted is further increased by the hyper-competition for research grant awards, causing many faculty scientists to try to acquire 2 or more grants (see: “All About Today’s Hyper-competition for Research Grants” ). Both these increases make the shortage of research money worsen each year!

My position about wastage of grant money is let’s stop this nonsense so the many dollars freed from being wasted can be used to support the direct costs of worthy research. My position about producing more doctoral scientists is let’s decrease the number of new PhD’s, so the supply/demand imbalance between number of applicants and the amount of dollars available is removed; this reduction will later decrease the total number of faculty scientists.

Discussion and conclusions!  

The policies of both the research grant system and the universities create and encourage the present mess!  Instead of crying out for even more money for science, I sincerely believe it would be much better to increase support funds firstly by stopping the very large wastage of funds awarded by research grants, and secondly by decreasing the number of university scientists applying for research grants.  Both these changes can be accomplished now without disruptions! They will directly remedy the seemingly unsolvable Malthusian problem with needing more and more money for research grants every year.

Why aren’t alternative possibilities being evaluated and discussed? The answer to this unasked question is very easy: the universities and the research grant system both love all their current policies and practices, even though these are very destructive for university science. University scientists are silent and afraid to protest because they will do anything to get their research grant(s) renewed. The research grant officials at federal agencies are silent because they are afraid to challenge and try to change the status quo. This financial situation now is locked in place (see: “Three Money Cycles Support Scientific Research” ).

Two effective models to support scientific research without needing external research grants are available. The ongoing success of self-funding of industrial research works well, does not depend on external research grants, and might have some usable practices that would help the financial problems for university science. Whether further commercialization of science at universities would help improve their financial operations remains to be seen. The very successful internal funding system supporting basic and applied research projects at the Stowers Institute for Medical Research (Kansas City, MO.) provides another good alternative model for escaping from the current malaise (see: “Part II: The Stowers Institute is a Terrific New Model for Funding Scientific Research!” ). Yet other systems for funding scientific research at universities also are of interest here, but are not being actively considered.

My conclusions for Part II are that: (1) the present conditions for federal support of scientific research at universities are very destructive and not sustainable without killing science (see: “Could Science and Research Now be Dying?” ), and, (2) alternative and unconventional means for providing the large pool of dollars needed to pay for scientific research should be more closely examined and discussed.

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE 

IS MORE MONEY FOR SCIENCE REALLY NEEDED?  PART I. 

 

Where does federal research support go to? Many other recipients are not shown here. Segments of this pie chart do not total 100%! (http://dr-monsrs.net)

What research gets federal support? Many other recipients are not shown here, and slices of this pie chart do not total 100%!  (http://dr-monsrs.net)

Every year there is a storm of activity in Congress about how much money should be appropriated for federal support of science and research.  These yearly debates in Congress are accompanied by focused media campaigns in the public arena.  The total annual appropriation is some billions of dollars (see:  “Federal obligations for research and development, by character of work, and for R&D plant: FYs 1951-2015” ).  Of course, for all the liberals it is never enough!  As long as national taxes are collected, the taxpayers provide this huge pile of dollars.  All of these activities result in a never-ending upward spiral of more and more dollars.

My view is that more funding is not needed!  Since almost nobody will agree with my position, this essay explains and discusses the issue.  For beginners, please first get some background by reading “Introduction to Money in Modern Scientific Research”, and “Money Now is Everything in Scientific Research at Universities”.  Throughout this essay I am specifically referring to faculty scientists researching in universities.

Reasons why more money seems to be needed! 

There are several well-constructed reasons why many more dollars appear to be needed to adequately support and promote scientific research in universities.

(1)  Many good projects now cannot be supported by research grants since there are not enough dollars available in the budget appropriated by Congress (see:  “Trends in Federal R&D, FY1976-2016” ), meaning that some good studies proposed by university scientists cannot be conducted.  All research by all university scientists needs to be supported!

(2)  Some approved projects receive only partial funding since there are not enough dollars available to pay for all portions of the budgets requested; this prevents completion of all the specific aims and limits the progress of scientific research!

(3)  Since research grants by their nature are competitive, the present shortage of research grant funding results in the very best applicants being fully funded, but most of the others are out of luck; we need more money in order to support all our dedicated university scientists!

(4)  New PhD’s are bestowed upon graduate students in science every year; this annual increase in the number of new scientists must be supported by a corresponding annual increase in funding of research grants just for them!  More scientists means more progress!

(5)  The United States (US) needs to improve its science education for children so we will be able to compete more successfully with the better education provided in some foreign countries (see:  “Asia tops biggest global school rankings” ); it will be a disaster if our students are not adequately educated about science, so much more money is required to improve our math and science education!

(6)  The most important questions for scientific research (e.g., cancer, water purification, remediation of pollution, solar power, etc.) need to be solved as quickly as possible, so we must selectively fund investigators in these areas; much more money to fund the very best scientists working on these questions will speed up the progress of science for these targets!

Reasons why more money is not needed

Although all of the foregoing are well-intentioned and some are based on true facts, each reason listed above is strongly disputed!

(1)  Not all doctoral scientists conduct research, not all work at universities, and, not all proposed projects are worthy of being funded and conducted; thus, the wish that all should be funded by research grants is just a utopian dream!

(2)  The handicap of partial funding is very real, but is an inherent consequence of the competitive nature of the research grant system; some partial support undoubtedly is an attempt by the federal granting agencies to spread their awards to more applicants, thereby keeping them quieter than those receiving no research funds at all.

(3)  Competition for research grant awards no longer is a valid term; instead, this must be termed a hyper-competition (see:  “All About Today’s Hyper-competition for Research Grants” ).  It is a vicious and destructive arrangement, which distorts and disrupts the true aims of science and research.  Fully funding all applicants with research grants is impossible, unless and until the streets will become paved with gold!

(4)  Increasing money for research support in proportion to the ongoing annual increase in the number of applicants and applications for research grants is another impractical dream; its proponents never state where funds for all the new awards will come from.  Generally, more dollars means more taxes!

(5)  More money will not necessarily improve science education (i.e., look at what all the money already spent has not accomplished!); instead, what is needed are better teaching, improved students, less memorization and more learning to increase understanding, instruction about problem solving, instruction to counter the false Hollywood message that science and research are entertainments, teaching children and adults how scientific research is very important in the daily life of all people, etc.

(6)  Progress in research is always chancy!  There is no guarantee whether and when an important research question will be answered.  Research grants can be targeted, but it is not predictable which faculty scientist will make the most outstanding discovery.  It is unrealistic to throw tons of money at a few scientists, since it is very unclear whether those faculty scientists acquiring large piles of grant money by virtue of their non-science business skills also are the best researchers.  Instead, reducing the present emphasis on applied research, and increasing the training of student scientists to investigate basic research within the large areas related to the most important research questions, will increase progress towards these goals.

Brief discussion for Part I. 

Examination of the arguments listed above denies the validity of the traditional annual proposal that more and more money is need to support scientific research.  In utopia, funding all university scientists certainly would be nice; in the real world, there is not enough money to do that!  Also needed are major rearrangements in the priorities and operations of the present system for science in US universities.  What is particularly needed are new ideas and changes in the status quo for interactions between research grant agencies and universities; this will be examined in detail by Part II!

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE 

 

SCIENCE AND THE GOVERNMENT: WHAT’S RIGHT AND WHAT’S WRONG? PART II. 

 

US national government interacts with everything and everyone, including science, research, and scientists! (http://dr-monsrs.net)

US national government interacts with everything and everyone, including science, research, and scientists!   (http://dr-monsrs.net)

 

Science in the United States (US) directly interacts with people, small and large businesses, education, the health system, engineers, students, media, etc.  One of the very largest and most extensive interactions of science is with the US national government.  This 2-part essay takes a critical look at the many involvements of our government with science, research,, and scientists.  Part I introduced the means and purposes of the government’s interactions with science (see:  “Part I” ); this Part II will examine the positive and negative features resulting from governmental policies and actions for science and research.

What are government research grants doing to university scientists and to the conduct of their research studies in 2015? 

Billions of dollars are spent each year by our national government to fund research grants to university scientists for their investigations in all branches of science [1,2].  In 2013, over 5 billion dollars were awarded by the National Science Foundation to support research and education [3]; the National Institutes of Health dispenses even more money for health-related research and clinical studies  Since everyone benefits from progress in science, the US federal government should be praised for financially supporting so many university researchers and research projects.

Unfortunately, it also is true that there are some very serious negative features and counterproductive outcomes of the present research grant system in the US:

(1)  there is huge wastage of grant funds for university research  (see:  “Wastage of Research Grant Money in Modern University Science” );

(2)  basic research is less emphasized and funded than is applied research, thereby decreasing generation of new concepts, technologies, and research directions;

(3)  the chief goals for becoming a university scientist have changed from discovering new knowledge, conducting innovative experimental investigations to answer important research questions, and developing new technologies, to acquiring more dollars from more research grants;

(4)  due to the enormous number of scientists and applications for research grants, many approved studies only receive partial funding, thereby preventing full completi0n of their specific aims;

(5)  the extensive current hyper-competition for research grant awards directly causes and stimulates corruption and dishonesty in science;

(6)  composing many new research grant applications now takes up more time for many university science faculty than does doing research experiments in their laboratories;

(7)  the present hyper-competition for research grant awards means that postdoctoral research fellows increasingly are expected to obtain research grants, instead of doing advanced experiments under the support from their mentor’s grant(s);

(8)  the epitome of becoming a famous scientist has been changed from a researcher who makes major discoveries, establishes new directions via breakthrough experiments, achieves new understanding, and innovates new technology, into a scientist-managerwho sits at a desk, rarely (if ever!) enters their laboratory rooms, and acquires some gigantic amount of research funding that enables employment of over a hundred research associates working inside a new research building;

(9)  money is absolutely everything for US universities in 2015, and their science departments are only business entities to generate increased profits (see:  “Money Now is Everything in Scientific Research at Universities” ); and,

(10)  items 1-9 produce degradation and decay of science and research in US universities, which explains why fewer college graduates now enter a career in science; their places in graduate schools now are filled by numerous foreign students, most of whom later find employment as science faculty and researchers in the US.

Some governmental interactions with science are good, but others are very bad! 

Among the good results, we can include that scientific research in the US  continues to produce new discoveries, issues many publications in science journals, creates some new directions, and makes some important progress.  US scientists continue to win the Nobel, Kavli, Lasker, or Breakthrough Prizes, and certainly are very deserving of being honored for their outstanding research achievements.  It is good that  governmental agencies regulate medical and laboratory research activities for reasons of safety, economy of expenses, and accountability, but this also can restrict creativity, innovation, and research freedom.  The US government should continue to support scientific research because that advances science and technology, and thereby leads to benefits for everyone in our society.

On the other hand, the quality of science and of the too numerous modern research publications both are going down.  The entire purpose of becoming a doctoral scientist working in universities has changed, and it is not surprising that this has resulted in the decrease of quality!  University science now is only a business where money and profits are everything, and faculty research scientists now are businessmen and businesswomen (see:  “What’s the New Main Job of Faculty Scientists Today?” ).  The federal research grant system fully supports all of this!  Obvious wastage of research funds continues to be accepted as an endemic problem in the research grant system (see: “Research Grants: What is Going on with the Indirect Costs of Doing Research?” ), making a mockery of the annual crying for more money to support science.  All these changes are obvious to most doctoral science faculty!

Hyper-competition for research grants could be the very worst feature of the status quo! 

The vicious and destructive hyper-competition for research grant awards degrades, distorts, and perverts scientific research at universities (see: “All About Today’s Hyper-competition for Research Grants” ).  This situation is directly caused by policies of both the funding agencies and the universities.  Both organizations approve and like the financial effects of the hyper-competition, and neither seems to understand how this  diverts and undermines scientific research.  Corruption and dishonesty in science are increasing every year, due in large part to the enormous pressures generated by this hyper-competition for research dollars (see:  “Why Would Any Scientist Ever Cheat?” ).  Hyper-competition now causes many university scientists to spend more time composing grant applications than they do working on research in their lab.

Why don’t the science faculty at universities speak out and take action? 

An obvious question is why faculty scientists tolerate the current degeneration in science and research at universities?  Several answers can be given.  First, university scientists in general are increasingly dissatisfied with their employment (see:  “Why are University Scientists Increasingly Upset with their Job?  Part I” , and, “Part II” ); every year some university scientists do move out of academia (of necessity, or by choice), and find a better job in industrial research, science-related companies, or non-science employments.  Second, most university scientists holding research grants do recognize the problems caused by the present system, but are too frightened to complain or criticize the research grant system since that could reduce their chances for renewal of their research funding; it seems safer and easier to simply keep quiet.  Third, US college students increasingly reject studying to get a PhD for a career in academia; increasing attention by graduate schools now is given to better preparing their science students for employment outside of universities or even outside of research.  Fourth, postdoctoral research fellows are organizing and announcing their misgivings about academic science in general and about abuses of their position as researchers in training.

My sad conclusion! 

Many of the problems I have described and discussed here are widely known to science faculty, but these issues are only rarely discussed in public or addressed by science societies at their annual meetings.  It thus appears to me that universities and the research grant system will have to get even worse before they can change to become better!

My foremost conclusion, based upon having personally seen how things used to be before the hyper-competition for research grants started and expanded, and, before the ongoing conversion of faculty scientists and postdoctoral research trainees into slaves, is thatuniversity science now is dying (see:  “Could Science and Research Now be Dying?” ).  I am not the only one to come to this sad conclusion (e.g., see:  “Science has been Murdered in the US, as Proclaimed by Kevin Ryan and Paul Craig Roberts!” ).

 

[1]  National Science Foundation, 2015.  Table 1. Federal obligations for research and development, by character of work, and for R&D plant: FYs 1951-2016.  Available on the internet at:  http://www.nsf.gov/statistics/2015/nsf15324/pdf/tab1.pdf .

[2]  American Association for the Advancement of Science, 2015.  Trends in federal R&D, FY 1976-2016.  Available o the internet at: http://www.aaas.org/sites/default/files/DefNon_1.jpg .

[3]  National Science Foundation, 2015.  TABLE 4. Federal obligations and outlays for research and development by agency: FYs 2013-2015.  Available on the internet at: http://www.nsf.gov/statistics/2015/nsf15324/pdf/tab4.pdf .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE 

SCIENCE AND THE GOVERNMENT: WHAT’S RIGHT AND WHAT’S WRONG? PART I.

US national government interacts with everything and everyone, including science, research, and scientists! (http://dr-monsrs.net)
US national government interacts with everything and everyone, including science, research, and scientists!   (http://dr-monsrs.net)

 

Science in the United States (US) directly interacts with people,businesses, educational institutions, the health system, engineers, students, media, etc.  One of the very largest and most extensive interactions of science is with the US national government.  This 2-part essay takes a critical look at the many involvements of our government with science, research,, and scientists; Part I introduces the different means and purposes of government’s interactions with science.

Overview of official interactions of US government with science. 

Very many different agencies of the federal government act upon all branches of science with administrative oversight, numerous regulations, money and contracts to support research projects, new initiatives, policy directives, provision of information, public education, etc.  The larger agencies specialized for science include the National Science Foundation, the National Institutes of Health, Agricultural Research Service, Center for Disease Control and Prevention, Food and Drug Administration, National Academy of Sciences, National Aeronautics and Space Administration, National Library of Medicine, etc.  All these have large administrative staffs, large budgets, and large areas of action.  In addition, many branches and agencies of the military also deal with science.  Official representative scientists are appointed as advisers to the President, Congress, and other governmental bodies.  One can only conclude that the national government is authorized to actively interact with science, technology, and scientists, at many different levels.

Money is at the center of all government interactions with science!  

Money in science is required for all the expenses of conducting research studies (see:“Introduction to money in modern scientific research” ).  For science at universities, several government agencies support research expenditures by awarding competitive grants to faculty scientists proposing important projects.  Thus, external money is at the heart of all interactions between the government and university scientists; many rules and regulations follow the acceptance of any research grant award.  Government uses this dependence upon federal research grants to control university science and direct faculty research into certain directions.

Governmental control of science and research. 

US government administrators make policy directives and issue numerous regulations for science, research, education, and medical activities.  As specific examples of this network for extensive control of science at universities via policies, programs, and regulations, we can now consider: (1) the Congress, which legislates the number of H1b visas issued each year for foreign scientists to be employed in the US, (2) the Nuclear Regulatory Commission, which  enforces safety requirements for use of radioactive materials in scientific research, (3) the Occupational Safety and Health Agency (OSHA), that mandates what special features must be present in refrigerators for their use within research labs, (4) the Food and Drug Administration, which is supposed to determine whether pharmaceutical products are safe and effective for patient care by physicians, and (5) the National Institutes of Health (NIH), which mandates salary levels for Postdocs researching in grant-supported labs.  These are only a few examples from the many available!

How does the government actually use science and scientists? 

Scientists often are used to provide “expert opinions and evaluations” for dealing with big problems facing the government.  Those frequently involve testimonial input that is used to justify policy decisions and positions about controversial issues (e.g., global warming, mandated use of vaccines, approval or disapproval of new drugs and public health regulations, responses to foreign epidemics, international disputes, etc.).  In response to such usage, opponents of the government’s position bring forth their own expert scientists!  Readers should  note that these controversies usually are about politics, economics, and power, rather than about science (see: “What Happens When Scientists Disagree? Part II: Why is There Such a Long Controversy About Global Warming and Climate Change?” ).  It would be much better if the government sought recommendations of expert scientists before policies are made, rather than after they are finalized!

People give enormous amounts of money for scientific research, via their taxes! 

Scientific research costs a lot of money (see:  “Why is Science so Very Expensive?  Why do Research Experiments Cost so Much?” ).  This clearly is in the national interest and deserves to be supported.  The US government pays giant amounts of dollars for: science education at schools and universities; research grants for universities, hospitals, and small businesses; clinical research trials; large special facilities for research usage; science meetings; public education about health and science; etc.  The annual budget for sponsoring all these science-related activities is many billions of dollars [1,2]. Most funding comes from taxpayers; thus, all taxpayers deserve many thanks from university scientists for supporting their research activities!

In addition to basic and applied research investigations at universities, medical schools, and hospitals, a very large amount of research and development also takes place at industrial laboratories.  All the research investigations in industries costs a huge number of dollars in total, and are internally paid by individual companies.

The forthcoming Part II will present both the good and bad consequences of governmental interactions with science, research, and scientists.  Special attention will be given to how the present research grant system is hurting  scientific research, rather than helping it!

 

[1]  National Science Foundation, 2015.  Table 1.  Federal obligations for research and development, by character of work, and for R&D plant: FYs 1951-2015.  Available on the internet at:  http://nsf.gov/statistics/2015/nsf15324/pdf/tab1.pdf .

[2]  American Association for the Advancement of Science (AAAS), 2015.  Trends in federal R&D, FY 1976-2016.  Available on the internet at: http://www.aaas.org/sites/default/files/DefNon_1.jpg .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE 

SCIENTISTS AND ENGINEERS INDEED WORK AS PARTNERS!

 

Scientists and engineers are partners for new products and new technologies! (http:dr-monsrs.net)

Scientists and engineers are partners for new products and new technologies! (http:dr-monsrs.net)

When earlier presenting a very general introduction to science and research (see:  here! ), I stated my conviction that scientists and engineers work as partners in creating new advances in products and technologies for all of us.  I will briefly explain this viewpoint, and then will direct you to 2 thrilling videos that vividly show this profound collaboration.

What is science for?  What do scientists do?    

Scientists search for the truth and seek to understand everything.  Research investigations by scientists are a major part of their work, and these are aimed at gathering evidence (i.e., data) that answers research questions.  Scientific research is conducted in universities and small or large industries, and often utilizes specialized instrumentation and methodologies (see: “Instrumentation” and “Methodology” ).  Besides experiments in laboratories, scientific research also takes place in the field, hospitals, computer centers, and large special facilities.

Typical results of this research include determining causes and effects, understanding mechanisms at all levels, defining sequences of changes, determining structure, and, relating structure to functions.  After carefully evaluating all the data resulting from investigations, research findings and conclusions often are published within professional journals and presented at annual science meetings.

What is engineering for?  What do engineers do? 

Engineers of all kinds generally work on practical matters needed for the design, construction, modification, and improvement of discrete objects or processes that ultimately will be produced commercially.  Typical goals of engineers are to make some product cheaper to manufacture and operate, more efficient, longer lasting, faster or slower, more attractive, quieter, easier to use, more precise, etc.  To accomplish these goals, they must have much knowledge and understanding about materials, manufacturing processes, friction and lubricants, corrosion and coatings, compatibilities, ergonomics, aesthetics, etc.  Working experience also is very important here!

Engineers often seek patents rather than publications.  After carefully evaluating all aspects of their conclusions for a new or modified commercial product, the manufacturer will select one set of choices for trial production and evaluation.  If any of the predicted properties and features of the finished product do not match expectations, then further engineering must be undertaken for refinement of the design.  The end point is commercial production and widespread usage.

Relationships between the activities of scientists and engineers. 

Engineering mostly depends upon there being some previous scientific research, and basically begins where science leaves off.  It also can begin with an amateur invention.  Customers of any new or improved product only see the final output of both science and engineering together.  This final result clearly is due to a strong partnership between scientists and engineers, even though they do not often work in a side-by-side manner.

Scientific research often constructs models or theories that can determine or explain something that nobody can know for certain (e.g., how small can a transistor be?).  Based upon knowledge of physics, engineers determine how small transistors can be made with today’s technology.  These different aspects of transistors certainly are related, but also are rather separate.

Nowadays, scientists and engineers both use computers to a prominent extent.  Typical usage of computation includes data collection, designing and planning, 3-D and 4-D modeling, theoretical changes and testing, quantitating relationships, and, all analyses of experimental data.

Amazing videos you must see! 

Striking examples of the duality between scientists and engineers are shown in both of the 2 following videos.  I urge you to watch these twice!  You should first watch only for your amusement, and then watch a second time again to see how scientists and engineers both played important roles in creating the amazing new devices shown.  You might want to show these remarkable stories to your family and recommend them to your friends!

A constructed robot is an artificial bird that flies by flapping its wings! 

In the video, “A Robot that Flies Like a Bird”, Markus Fischer shows a fantastic  construction made with engineers at the Festo Corporation, a global manufacturer of components and systems for industrial automation and control technology.  This is a robot that flies similarly to a living bird, but has no feathers, no heart or brain, and doesn’t eat.  Scientific research knowledge first was used to model all the forces and aerodynamics for the flight of real birds by flapping of their wings. Then engineering investigated and decided on the many practical details needed to actually construct the robotic model bird, get it to fly by flapping its wings, and control its flight; those efforts included such engineering details as how long and wide the wings must be, dynamic angles of the flapping wing surfaces, how rapidly must the wings flap, what are the limits for weight to still permit flying by flapping, what role does the tail play, etc., etc.  What this new robot will lead to remains to be seen!

A flying human known as the “Jetman”! 

Yves Rossy was driven to try to fulfill the ancient human dream of being able to fly, so he used his  aeronautical knowledge and sky-diving experience to propose a way to do that.  Working with many detailed known parameters for powered flight, he and engineers at Breitling, a Swiss manufacturer of technical watches and chronographs, designed a set of light rigid wings  containing 4 high-tech small powerful jet engines; after strapping this onto his back, he can fly with directional control only via movements of body contours (i.e., position of head, arms, and legs, and, torsional shaping of his body).  He launches his flight by diving out of a helicopter, and usually lands with a special parachute system.  Watch the video, “Flying With Jetman”, to learn about making this new machine, see his amazing flights, listen to stories of his adventures, and laugh at his great sense of humor; he is a most fascinating man and a daring pioneer!  Note that a number of other videos about the Jetman also are available on YouTube.

Conclusions. 

These 2 exciting videos directly illustrate how science and engineering work together as strong partners.  Contributions from  both professions are vitally important, and can dramatically reveal the human spirit!

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE 

 

A VERY NEW IMMUNOTHERAPY FOR CANCER WINS THE 2015 LASKER-DEBAKEY CLINICAL MEDICAL RESEARCH AWARD! 

Cancer is "The Big C" for patients, doctors, and research scientists! (http://dr-monsrs.net)
Cancer definitely is “The Big C” for many patients, doctors, and researchers!   (http://dr-monsrs.net)

Many critics of spending billions of dollars on cancer research typically point to the fact that a general cure for neoplastic diseases had not been discovered (see:  “After Spending Billions, Why have Scientists Not Yet Found a Cure for Cancer?” ).  That now is no longer a convincing question, thanks to the basic and applied research of James P. Allison, PhD (University of Texas M. D. Anderson Cancer Center, in Houston).  His breakthrough experiments and new ideas for anticancer therapy led to remissions and probable cures for some cancer patients who previously had no hope.  This article briefly describes Dr. Allison’s research on the functioning of specialized cells in the immune system, which led to discovery of a very new effective approach for therapeutic treatment of cancer.

The Lasker Awards. 

Each year, the Albert and Mary Lasker Foundation [1] bestows 3 Lasker Awards: Albert Lasker Basic Medical Research Award, Lasker-DeBakey Clinical Medical Research Award, and, Lasker-Bloomberg Public Service Award.  The 2015 Lasker Awards and Laureates all are nicely described on the Foundation website: http://www.laskerfoundation.org/media/index.htm .  Lasker Awards are considered to be most prestigious for medical science,  and the awardees often are considered to be likely to soon receive a Nobel Prize.

Dr. Allison has just won the very prestigious Lasker-DeBakey Clinical Medical Research Award for 2015 for his innovative new immunotherapy against cancer [2-4].  He previously has received numerous other honorary awards, including the 2014 Breakthrough Prize in Life Sciences [5] and the 2014 Szent-Györgyi Prize from the National Foundation for Cancer Research [6].

A new kind of anti-cancer immunotherapy is developed by Dr. Allison [2-6]! 

Many different immunology-based therapies against cancer have been investigated, but most have produced only limited clinical benefits.  The experimental treatment of cancer with antibodies that specifically bind to molecular components produced by cancer cells has not been successful.  Dr. Allison’s early research investigated the molecular mechanisms for how some cells of the immune system, T-cells, work in the cellular immune response to recognize and kill bacteria, viruses, and abnormal cells in the body. T-cell activities are nominally independent from antibody responses of the immune system.

Detailed research about T-cell surface receptors, binders, and cofactors led to Dr. Allison’s recognition that there are both positive on-signals and negative off-signals regulating T-cells.  One of the down-regulators is a receptor protein named, CTLA-4; upon binding of CTLA-4 to it’s targets, the activation and proliferation of T-cells are turned off.  This negative regulation is normal and is believed to prevent active T-cells from attacking the body’s own constituents (i.e., autoimmune diseases).

Most immunologists have long thought that the immune system should recognize, attack, and kill cancer cells.  Thus, it was a mystery why such does not happen.  This puzzle led Dr. Allison to ask whether CTLA-4 might be turning off a T-cell response against cancer cells.  He tested this hypothesis by developing antibodies that specifically bind CTLA-4 molecules, thereby inactivating their functional activities, including the down-regulation of T-cells.  When these antibodies were injected into laboratory mice bearing a transplantable tumor, there was a large proliferation of T-cells and strong killing of cancer cells inside the tumors!  Injecting control antibodies which bound other proteins had no effects on T-cells, so the tumor-bearing mice died.  Thus, these and other experimental results showed that stopping the normal down-regulation of T-cells released them to give a strong response against neoplastic cells.  The brakes on T-cells had been released by Dr. Allison, so their endogenous anti-cancer activities now went full speed ahead!  The go/no-go interaction between CTLA-4 and T-cells now is known as an immune checkpoint.

The next step in this ongoing research project involved translating the findings from basic research into applied clinical research with experimental treatment of human cancer patients.  After finally finding a pharmaceutical company willing to collaborate with production and testing of anti-CTLA-4 human antibodies, Dr. Allison began initial clinical trials of this experimental treatment of cancer patients who had not responded to any usual surgical, chemical, or radiation therapy.  In some cases the new immunotherapy worked quite well!  A standardized commercial version of human anti-CTLA-4 antibodies was approved for clinical use in 2011; over 30,000 cancer patients now have received the new immunotherapy.  This new cancer treatment is not just another promise of some hoped for future development; it is here today, and actually saves the life of some cancer patients.

Ongoing research in anti-cancer immunotherapy by Dr. Allison and other scientists [2-6]. 

The door now was opened to try this very new kind of anti-cancer therapy with different patients, different cancers, and different therapeutic protocols.  The effects of anti-CTLA-4 antibodies had dramatic results for some patients with malignant myeloma, a blood cell cancer that usually is fatal within one year.  The anti-CTLA-4 therapy put some, but not all, myeloma patients into long-term remission (i.e., over 14 years)!  New research, both by Dr. Allison and by other clinical research scientists, seeks to find: (1) why some malignant myeloma patients do not respond to this new therapy, (2) which additional cancers can be treated by this immunotherapy, (3) whether manipulating other proteins regulating T-cell activities will provide additional curative effects, (4) will combination treatments of cancers (e.g., immunotherapy with concurrent chemotherapy) give even better curative effects, and, (5) can manipulating other immune checkpoints have therapeutic effects against any non-cancer  diseases?

Special features of this very new kind of immunotherapy. 

Some distinctive very special features of this new kind of immunotherapy must be recognized by all readers!

(1)  The new curative therapy is targeted against the immune system, and not against cancer cells.

(2)  T-cells can effectively kill cancer cells; thus, an endogenous response is what kills the cancer cells.

(3)  Endogenous activities of T-cells against neoplastic cells normally are halted by activities of CTLA-4.

(4)  Right now, this new immunotherapy probably cures several types of cancer in some patients.

Concluding remarks. 

Dr. James Allison deserves immense credit for coming up with new ideas and new research findings about the immune system, and for asking new clinical questions.  He is an superb example of how PhD scientists investigating pure basic science in a laboratory can contribute much to applied clinical research.  Individual scientists having creativity, curiosity, enthusiasm, and the guts to think new thoughts, just like Dr. Allison, are the best hope for more important discoveries in all branches of scientific research.

Dr. Allison very clearly has made a wonderful contribution to modern clinical medicine.   All of us can hope that additional cancers finally will be conquered with the results from further research studies and innovative medical developments.  In addition, new approaches to immunotherapy might also benefit patients with some non-cancer diseases.

Recommended videos by and about Dr. James Allison! 

“James Allison’s Cancer Research Breakthrough”, 2014, is available at: http://www.youtube.com/watch?v=ySG2AwpSZmw&spfreload=10 .

“Dr. Jim Allison – 2014 Szent-Györgyi Prize”, 2014, is available on the internet at: http://www.youtube.com/watch?v=YGu2uzV9QOM .

“James P. Allison, Ph.D. on Targeting Immune Checkpoints in Cancer Therapy”, 2015, is available at:  http://www.youtube.com/watch?v=CoBkuTOPJqg .

 

[1]  Lasker Foundation, 2015a.  Foundation overview.  Available on the internet at:  http://www.laskerfoundation.org/about/index.htm.

[2]  Lasker Foundation, 2015b.  Lasker-DeBakey Clinical Medical Research Award.  Award description.  Available on the internet at:  http://www.laskerfoundation.org/award/2015_c_description.htm .

[3]  Lasker Foundation, 2015c.  Lasker-DeBakey Clinical Medical Research Award.  Award presentation by Michael Bishop.  Available on the internet at:  http://www.laskerfoundation.org/awards/2015_c_presentation.htm .

[4]  University of Texas M. D. Anderson Cancer Center, Newsroom, 2015.  MD Anderson immunologist Jim Allison wins Lasker-DeBakey Award.  Available on the internet at:  http://www.mdanderson.org/newsroom/news-releases/2015/allison-wins-lasker-award.html .

[5]  University of Texas M. D. Anderson Cancer Center, Newsroom, 2013.  M.D. Anderson researcher Jim Allison wins Breakthrough Prize for his innovative cancer immunology research.  Available on the internet at:  http://www.mdanderson.org/newsroom/news-releases/2013/immunology-research.html .

[6]  National Foundation for Cancer Research, 2015.  The Szent-Györgyi Prize for progress in cancer research.  Available on the internet at: http://www.nfcr.org/prize .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE

 

WHISTLEBLOWERS IN SCIENCE ARE NECESSARY TO KEEP RESEARCH AND SCIENCE-BASED INDUSTRIES HONEST!

 

Direct quotations from Dr. Peter Wilmshurst, given in published statements. (http://dr-monsrs.net)

Quotations by Dr. Peter Wilmshurst, taken from various published statements.     (http://dr-monsrs.net)

 

Anyone, even professional scientists with a PhD or MD, can make an honest mistake.  However, falsification or other dishonesty by a research scientist is an inexcusable breach of trust.  Since the goal of research is to find the truth, mistakes or alleged falsehoods must be investigated and corrected, in order to let science progress.  Whistleblowers in science have been rather few, largely because it is so much easier to keep quiet and overlook falsehoods or even criminal misrepresentations; speaking out or initiating inquiries about corruption in research typically leads to counter-allegations, challenges to professional reputation, prolonged court cases, and, only small penalties for proven wrongdoers.  Hence, most doctoral scientists keep quiet, particularly if an allegation involves someone with a higher professional rank; this is known as the “code of silence”.

This article describes the amazing adventures of a clinical and research cardiologist in Britain, Peter Wilmshurst, MD, who became a successful whistleblower.  During his medical research work, he found clear unethical and criminal misconduct by individuals and companies, so he courageously initiated several inquiries.  Unlike many others, Dr. Wilmshurst refused to be silenced by bribes or threats, and ultimately forced honesty to prevail.  Dr. Wilmshurst undoubtedly is nothing less than a heroic medical scientist!

Whistleblowing by Dr. Wilmshurst protected heart patients from a dangerous new drug [1-5]! 

In the 1980’s, Dr. Wilmshurst was invited by a very large pharmaceutical company in the UK to participate in their clinical research trial evaluating the efficacy of a new oral drug intended to strengthen cardiac contractions in patients with heart failure.  His research data showed no effects upon contractility in patients, and revealed very dangerous side effects.  According to the company, research data from their own researchers were strongly and uniformly positive.

When he reported his research results to the manufacturer, he was asked to suppress his negative findings.  Wilmshurst refused to do that, and would not keep quiet about his research results despite threats. Later, it was revealed that several other independent researchers had found adverse results similar to those of Dr. Wilmshurst, but fear had prevented them from announcing their findings.  The company published the results of this clinical trial without including Wilmshurst’s research findings.  The government health agencies, professional medical organizations, and several science journals heard Wilmshurst’s pleas for an official investigation, but all were afraid to do anything!  More and more reports from clinical physicians showed numerous medical problems arising in treated patients; finally, marketing this new drug in the UK and the US was stopped by the manufacturer, but sales and usage continued in some developing countries.  Only after a large write-up about Dr. Wilmshurst and his dispute in the Guardian newspaper (UK) was this dangerous pharmaceutical completely withdrawn from the entire world.

More whistleblowing by Dr. Wilmshurst protected migraine patients from a dangerous new medical device [1-5]!

Dr. Wilmshurst had published a research report in 2000 linking migraine to a fairly common developmental defect in the heart, patent foramen ovale.  His expertise as a cardiologist and medical researcher led to an invitation to be a research consultant in a large clinical trial of a new implantable device manufactured by a small company in the US; with implantation into the heart, this was supposed to close the cardiac defect.  The clinical trial examined whether its use would also stop recurring migraine attacks.  His echocardiogram results for treated patients differed greatly from those gathered by the cardiologists implanting the new devices on behalf of the manufacturer.  The company disputed Dr. Wilmshurst’s research findings and claimed that echocardiograms from the implanting cardiologists were correct, but his results were wrong and invalid.

That company then refused to include his research results within their published report on the clinical trial.  The company’s presentation of their clinical trial at a cardiology meeting in Washington did not mention his divergent interpretations of post-implantation echocardiograms, but Dr. Wilmshurst was in the audience (i.e., he had presented some of his own research at this meeting that did not concern this experimental device).  A reporter interviewed Dr. Wilmshurst at this meeting and published some of his comments about the divergent data for this experimental device.  Two weeks later, the company’s lawyers notified him of a lawsuit in the UK for defamatory libel; several more lawsuits for libel followed.

Media and medical journals began describing Dr. Wilmshurst’s ongoing fight against these lawsuits, which cost him much personal money over several years of worrisome court proceedings.  Perhaps in response to their estimates that all these trials would have a total cost of over 14 million dollars, the small manufacturer abandoned production of the new device and went out of business; the bankruptcy ended the lawsuits.  Dr. Wilmshurst again had successfully fought research misconduct and commercial fraud, thereby saving clinical patients from any grief with this ineffective new device.

Important lessons to be learned from Dr. Wilmshurst’s activities [1-5]. 

Several disconcerting lessons about both dishonesty and honesty in research can be learned from this determined British medical researcher and whistleblower.

(1)  Since scientific research is conducted by humans, it is easily subject to unethical conduct due to government inaction, overriding ambition, personal greed, selfish commercial interest, silence about professional wrongdoing, wrongful self-interest, etc.

(2)  Money and commercial interests make total honesty particularly difficult for scientists in cases where their research results contradict or call into question what is desired; research must seek the truth, and is distorted when it looks for only a predetermined result.

(3)  Industrial companies often can pressure and overwhelm individuals by using their large financial resources for bribes, teams of specialized lawyers in expensive lawsuits, direct threats to impugn professional reputation and personal integrity, etc.

(4)  The most common reaction upon finding dishonesty in science is simply silence and a refusal to become involved; this is very easy to do, but such tolerance of dishonesty can hurt innocent people (i.e., patients) and probably is itself a form of dishonesty.

(5)  The penalties and punishments for dishonesty in research are usually small or absent, which then encourages more dishonesty; some scientists even have a very successful career with repeated dishonesty that is widely known [2].

(6)  Corruption within all aspects of medical research is much more extensive than is commonly thought.

The ultimate goal of science is to find the truth, no matter what it might be.  Independent research is the best human means to decide what is true and what is false.  Whistleblowing serves to promote honesty in business, government, and science.  Court cases usually are initiated to pressure and intimidate whistleblowers to keep quiet or repudiate their earlier research findings and conclusions.  Judges and lawyers do not know enough about science to decide about controversies in research (see:  “What Happens when Scientists Disagree? Part V: Lessons to be Learned When Scientists Disagree” ).  As Dr. Wilmshurst has stated, “The law courts are not the best way to determine scientific truth.” [4].

Peter Wilmshurst is a unique individual, and certainly is a hero! 

Dr. Wilmshurst stands up for honesty even when other research scientists say nothing and ignore obvious wrongdoing, compromise their professional ethics by research misconduct, or show no personal integrity.  His personal characteristics and professional standards as a medical research scientist make him a great role model for young scientists, physicians, and research workers in all the disciplines of science.  He does not fear getting involved and announcing the truth even when that means making shocking disclosures about highly placed figures, esteemed professional organizations, very famous science and medical journals, successful large industrial operations, and, malfunctioning agencies in the national government.

It should be obvious that Dr. Wilmshurst is a very distinctive individual who successfully fought against large manufacturing companies, government agencies, professional medical associations, professional science journals, lawyers and courts, and blatant threats to his reputation as a professional clinical researcher.  He could do all of that because he is an ethical scientist with exemplary honesty, personal courage, and professional integrity.  Whereas he speaks out about dishonesty in research, many others choose to keep silent and refuse to challenge dishonesty and corruption; thus, dishonesty in science is widely tolerated [1].

Peter Wilmshurst should be honored for his career-long dedication to honesty and high professional standards in research!  In 2003, he received the HealthWatch Annual Award in the UK for his work against corruption and fraud in medical science [1].

Further information is directly available from Dr. Wilmshurst on the internet! 

A wonderful video presentation by Peter Wilmshurst, “The Role of Whistleblowers in Improving the Integrity of the Evidence Base”, is highly recommended to all reading this article (see:   https://www.youtube.com/watch?v=Xze-yPubFIY ).

Also highly recommended to all by Dr.M are both the written version of the speech given by Dr. Wilmshurst on the occasion of his receiving the HealthWatch Annual Award for 2003 (see:  http://www.healthwatch-uk.org/20-awards/award-lectures/65-2003-dr-peter-wilmshurst.html ), and, a very recent 2015 interview of Dr. Wilmshurst by R. von Bredow & V. Hackenbroch for Spiegel Online International, “Whistleblower on Medical Research Fraud: ‘Positive Results Are Better for Your Career’” (see:  http://www.spiegel.de/international/zeitgeist/spiegel-interview-with-whistleblower-doctor-peter-wilmshurst-a-1052159.html ).

Concluding remarks.   

Whistleblowers are essential to help keep everyone honest!  Even large companies and very famous scientists can become dishonest, unethical, or unprofessional.  Lack of honesty in scientific research can lead to grave practical problems for unsuspecting innocent people.   For medical research, Dr. Wilmshurst states appropriately, “Truth should not be decided by those with greatest wealth using bullying and threats to make a scientist retract what he or she knows is true.” [4].

[1]  P. Wilmshurst, 2004.  Obstacles to honesty in medical research.  HealthWatch – UK, Newsletter #52, 2003 HealthWatch – UK Award Lecture.  (see:  http://healthwatch-uk.org/20-awards/award-lectures/65-2003-dr-peter-wilmshurst.html ).

[2]  P. Wilmshurst, 2007.  Dishonesty in medical research.  Medico-Legal Journal 75:3-12. (see:  http://www.medico-legalsociety.org.uk/articles/dishonesty_in_medical_research.pdf ).

[3]  R. Smith, 2012.  A successful and cheerful whistleblower.  The BMJ (British Medical Journal) Blogs, October 10, 2012.  (see:  http://blogs.bmj.com/bmj/2012/10/10/richard-smith-a-successful-an.d-cheerful-whistleblower/ ).

[4]  R. A. Robbins, 2012.  Profiles in medical courage: Peter Wilmshurst, the physician fugitive.  Southwest Journal of Pulmonary and Critical Care, April 27, 2012/4:134-141.  (see:  http://www.swjpcc.com/general-medicine/2012/4/27/profiles-in-medical-courage-peter-wilmshurst-the-physician-f.html ).

[5]  P. Wilmshurst, 2012.  Justice Committee – written evidence submitted by Dr. Peter Wilmshurst.  UK Parliament, House of Commons, Select Committee on Science and Technology.  (see:  http://www.publications.parliament.uk/pa/cm201213/cmselect/cmsctech/163/163vw17.htm ).

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE 

 

A JACKPOT FOR SCIENTIFIC RESEARCH IS CREATED BY JAMES E. AND VIRGINIA STOWERS!  PART II: THE STOWERS INSTITUTE IS A TERRIFIC NEW MODEL FOR FUNDING SCIENTIFIC RESEARCH!

 

Cover of the 2007 autobiography by James E. Stowers with Jack Jonathan. Published by Andrews McMeel Publishing, and available from many booksellers on the internet. (http://dr-monsrs.net)

Cover of the 2007 autobiography by James E. Stowers with Jack Jonathan. Published by Andrews McMeel Publishing, and available from many booksellers on the internet. (http://dr-monsrs.net)

 

The life of a major benefactor to biomedical research, James E. Stowers, Jr. (1924-2014), was briefly introduced in the previous article (see: “Part I” ).  I have conjectured there that Jim Stowers must have understood exactly what are the very biggest problems and impediments for research in modern universities.  The Stowers Institute for Medical Research (see:  http://www.stowers.org/ ) precludes those destructive problems and represents a new model to better organize the funding and operations of scientific research at universities.  Part II now examines in more detail the differences between research centers at universities and the Stowers Institute.  I particularly hope that science faculty and administrators at universities will learn about and discuss this new model.

Major differences for science operations between universities and the Stowers Institute. 

The organization of financial support for scientific research at the Stowers Institute differs dramatically from that at universities in the US.  Universities now view science and research only as a business enterprise that is a good means to increase their financial income (i.e., from research grant awards).  This very widespread policy is so counterproductive for research progress that some even have concluded that university science must be dying (e.g., see: “Could Science and Research now be Dying?” and“Science has been Murdered in the United States, as Proclaimed by Kevin Ryan and Paul Craig Roberts” ).  Below are given the chief reasons why universities are so extensively  different from the Stowers Institute.

The number one reason why science in academia is so very unlike that at the Stowers Institute is that universities directly insist that faculty scientists rent laboratory space and support all expenses for their investigations by acquiring research grants.  For universities, faculty scientists now are only a means to the end of increasing their profits (see: “Money now is Everything in Scientific Research at Universities” ); the science faculty presently is forced to spend too much time and emotional energy on trying to acquire more research grant awards, instead of actually doing experiments to produce more new results.  The Stowers Institute replaces research grants by the very large  endowment from Jim Stowers and his wife, Virginia; this endowment is purposefully arranged to continue generating new funds that will be used for future research expenses.

The second reason is that advances in basic research now are downplayed by the funding agencies and by universities, due to its greater distance from generating new products and financial rewards.  Universities and the research grant system give much emphasis toapplied research and commercial involvements, since those produce income  more readily.  The Stowers Institute specifically targets basic research, which is the forerunner for all applied research.

A third reason is that the research grant system does not provide much direct support forexperimental projects needing 10-20 years to complete.  The most significant questions for research are very large and complex, so answering them simply cannot be accomplished with only the usual 3-5 years of supported research study; getting a research grant renewed always is uncertain, even for famous faculty scientists.  This time limitation discourages scientists from studying the most important research questions. At the Stowers Institute, projects on large research questions are able to be undertaken.

The fourth reason is that the Stowers Institute employs research scientists using contract renewals instead of the traditional tenure system found in universities.  Nowadays, the main way to get tenured in university science departments is to be successful at acquiring research grants; the tenure system mostly counts dollars and differs greatly from the ongoing evaluation of research quality utilized at the Stowers Institute.  Thus, universities actually are rewarding their science faculty for business skills rather than rewarding them for research breakthroughs and science progress.

A fifth reason is that the intellectual atmosphere at the Stowers Institute is much freer and more encouraging of creativity, curiosity, innovation, and interdisciplinary studies than is found at modern universities.  Business is not the endpoint of science; at the Stowers Institute, the openly sought endpoint is research excellence.

What are the effects of these differences upon science and research? 

For today’s universities, science is just a business and their faculty scientists are businessmen and businesswomen.  Their pursuit of money fundamentally changes and distorts the true aim of scientific research.  The chief target of science faculty is no longer to discover new knowledge and increase understanding.  Instead, daily life for many university scientists involves the hyper-competition for research grants, which wastes both time and money, and, makes it very difficult to trust any fellow faculty scientists for advice  and collaborations (see: “All about Today’s Hyper-competition for Research Grants” ).  Accordingly, science at universities now is distorted, degenerated, and perverted; this extensive decay subverts science and research at universities.

Turning university research into a commercial activity distorts the traditional aims of science, and increases the corruption of scientists there (see: “Why is It so very Hard to Eliminate Fraud and Corruption in Scientists?” ).  Basic research remains as important as it always has been, and should not be repressed in favor of applied research.  The Stowers Institute recognizes these values and succeeds in pursuing excellence in biomedical science; its success seems to be directly due to the philosophy and organization instituted by its founder and directors.

The policies and organization that Jim Stowers initiated clearly go against all the serious problems for science at universities.  His distinctive design emphasizes using and encouraging creativity, exploration of new ideas by innovative research, vigorous collaborations, and much hard work; this atmosphere aims to result in research breakthroughs and encourages new concepts in basic science.  Jim Stowers and co-organizers clearly have shown how this idealistic atmosphere can be accomplished in today’s world.  It is noteworthy that some large pharmaceutical firms endow their own research institutes quite similarly to what has been done for the Stowers Institute.

Is this huge difference only a question of money? 

Of course, many will say that the donation of a billion dollars would let their university activate enlightened policies for its science.  I disagree, and believe that money alone willnot remedy the negative aspects of current university science!  Also needed are wholesale changes in administrative policies, independent leadership, organization, philosophy, working atmosphere, and, much less dedication to commercialization.  All of these are essential!  Although making these changes would rescue university science from its present debilitation, it seems unlikely that such will be undertaken.

Any excuse by universities that they do not have such large funds does not explain why thehuge endowments already in-hand at some universities are not spent for the support of scientific research and researchers in a manner analogous to the Stowers Institute.  Instead, these very large funds are used to try to further increase the financial income and profits of academic institutions (e.g., all sorts of entertaining amusements on and off campus, flashy brochures and other publicity,  programs for visiting prospective students and parents, public courses and lectures, travel programs, solicitation of donations, sports activities and athletic contests, television specials, etc.).

Why cannot university science departments mimic the model of the Stowers Institute, and thereby free themselves from their major problems? 

If it is not only a question of money, then there must be something else that impedes adopting the Stowers Institute as a model for conducting good scientific research.  Opinions for identifying this hidden  factor will differ, but I see the actual cause as being the commercialization of science at universities (see: “What is the Very Biggest Problem for Science Today?” ).  This commercialization changes the whole nature of academic science and research.  The research grant system was intended to enable scientific research, not to change and distort it.  Universities were supposed to produce new knowledge and concepts, to teach, and to investigate the truth, not to become financial centers.  All these ideals have changed so greatly at universities that good scientific research now is hindered and foundering.  The actual priorities are quite different from the needed priorities; until these are changed, faculty scientists cannot hope to escape from their enslavement by the research grant system.

Concluding remarks. 

The Stowers Institute for Medical Research stands as a very successful new model for promoting research advances and science progress.  The big difference to science that Jim and Virginia Stowers have made in the US can and should be copied by universities to reorganize and better foster their high quality research.  This large change in priorities and operations need not be done all at once (i.e., simultaneously for all science departments); it could start with one science department and then expand to others over a 10-year period.  The payoff to universities for removing the restrictions and distortions imposed by viewing scientific research only as a commercial business enterprise, will be a substantial elevation of the quality and vigor of their science activities, and, a more reliable future input of income.

The success of the Stowers Institute dramatically proves that science does not need to be harnessed and hobbled by the research grant system!  Bypassing the grave current problems at universities stemming from the research grant system will reduce or remove the vicious hyper-competition for research grant awards that badly distorts their science, and will increase job satisfaction for the science faculty.  The benefits shown by this new model give some hope that university science need not continue to decay and degenerate until it actually dies (see: “Could Science and Research now be Dying?” ).

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU 

                                                          UNDER THE WEBSITE TITLE

 

THE 2015 NOBEL PRIZES IN SCIENCE ARE ANNOUNCED! 

 

Adjusted Photographic Portrait of ALFRED NOBEL in the late 1800's Taken by Gösta Florman. Common Domain Image obtained from Wikimedia Commons at the Wikipedia website: http://en.wikipedia.org/wiki/File:Alfred Nobel_adjusted.jpg .

Adjusted Photographic Portrait of ALFRED NOBEL in the late 1800’s Taken by Gösta Florman. Common Domain Image obtained from Wikimedia Commons at the Wikipedia website: http://en.wikipedia.org/wiki/File:Alfred Nobel_adjusted.jpg .

 

Eight scientists from several different countries will share the 2015 Nobel Prizes in Physiology or Medicine, Chemistry, and Physics.  Everyone in science is excited and is rushing to look in Science or Nature for all the details!  All these new Nobel Laureates should be congratulated by the public and by other scientists for their excellence in experimental research!  For background on the purpose and history of the prizes established by Alfred Nobel, see:   http://www.nobelprize.org .  The latest Nobel Prizes will be bestowed at ceremonies during the extensive Nobel Week festivities (December 5-12,  2015).  Below, I will briefly summarize the new Laureates and their impressive research achievements.

Physiology or Medicine [1]. 

The 2015 Nobel Prize in Physiology or Medicine goes to 3 scientists who discovered and developed new medical therapies that annually benefit several hundred millions of patients with parasitic diseases: William C. Campbell (Drew University, in Madison, New Jersey, US), Satoshi Omura (Kitasato University, in Tokyo, Japan), and Youyou Tu (China Academy of Chinese Medicine, in Beijing, PRC).  Pharmaceutical drugs resulting from their discoveries by research in microbiology and pharmacology now are widely used for effective clinical treatment of parasitic infections with roundworms (lymphatic filariasis, or river blindness) and malaria; both of these dreaded diseases afflict millions of persons today, particularly in developing tropical nations.  Thus, their basic research in laboratories has had a very widespread practical importance for clinical medicine.

Chemistry [2]. 

The 2015 Nobel Prize in Chemistry will be presented to 3 scientists who discovered different types of DNA repair mechanisms: Tomas Lindahl (Francis Crick Institute, in London, England), Paul Modrich (Duke University School of Medicine, in Durham, North Carolina, US), and Aziz Sancar (University of North Carolina School of Medicine, in Chapel Hill, North Carolina, US).  Their independent biochemical research experiments examined how acquired damage to the DNA molecules in genes, and errors in replicating DNA during chromosome duplication, are repaired by different protein-based mechanisms so that genes within cells can continue to function normally.  The importance of their findings in this area, and the large current research competition for making discoveries about DNA repair in relation to developing new treatments for cancer, are emphasized by the fact that only a month ago the prestigious Lasker Prize for medical research was awarded to 2 other scientists for research discoveries about DNA repair.

Physics [3]. 

The 2015 Nobel Prize in Physics is awarded to 2 investigators in the field of particle physics: Takaaki Kajita (University of Tokyo, in Tokyo, Japan) and Arthur McDonald(Queen’s University, in Kingston, Canada).  They independently discovered that neutrinos, which are a rather mysterious type of elementary particle, change (oscillate) their identity and certain characteristic properties as they travel at nearly the speed of light from space into the Earth’s atmosphere.  Their honored research was conducted at very special neutrino detection facilities located underground in deep mines, and staffed by many scientists  (Super-Kamiokande Detector in Japan, and Sudbury Neutrino Observatory in Canada).  Their experimental results gave evidence indicating that some neutrinos indeed do have an extremely minute mass; these new findings are  immensely significant for advancing knowledge and understanding about the physics of fundamental particles.

Brief discussion about the 2015 Nobel Prize winners. 

The Nobel Prizes in science continue to bring forth excellent researchers and outstanding experimental studies to the attention of the public worldwide.  Last year I published  some features which commonly characterize winners of Nobel Prizes in science (see: “What does It Take to Win the Big Prizes in Science?” ).  The individual 2015 Nobel Laureates mostly show those attributes, along with several others: (1) some Laureates conducted their prize-winning research work many decades ago, (2) all their wonderful discoveries began with studies in basic research, (3) the celebrated outcome of their work was developed further by important later contributions from other scientists, engineers, and commercial companies, and, (4) some of the prize-winning investigations have large immediate practical applications and impact, while others advance knowledge and understanding so that important new questions arise for further research.  Although some Nobel Laureates in 2015 researched as leaders with large groups of coworkers, all seem to be distinctive individuals who are very dedicated to science, have innovative ideas, and persist in their research efforts.

The new award to Youyou Tu is for her research that also involved very many other scientists for a nationwide effort against malaria that was initiated by Chairman Mao in China.  Her Nobel Prize once again raises the difficult and unanswerable question about whether it really is fair to honor only one person when there is a research partner or many co-workers (see:  http://news.sciencemag.org/health/2015/10/updated-nobel-prize-honors-drugs-fight-roundworms-malaria ).  Some outspoken Chinese critics of this 2015 award therefore might even propose that Chairman Mao should also get a Nobel Prize!

For the latest Nobel Prize in physics, it is interesting to note that several other Nobel Prizes were previously awarded for research on neutrinos, most recently in 2008 (see:http://www.nobelprize.org/nobel_prizes/physics/laureates/ ).  In general, certain research subjects and fields get more Nobel Prizes than do others; this tendency is due to the interdisciplinary nature of some research fields (e.g., investigations in biochemistry might be honored by a Nobel Prize in either Medicine or Chemistry).

For further information about the 2015 Nobel Prizes in Science. 

Readers are encouraged to examine more information about the winning researchers and their investigations!  I recommend reading the text references listed below, since all feature good information suitable for non-scientist adults.   Additional general information about the new Nobel Prize Laureates is available at: http://www.nobelprize.org/nobel_prizes/ .

 

[1]  Nobel Prize, 2015.  Press release, the 2015 Nobel Prize in physiology or medicine (see:http://www.nobelprize.org/nobel_prizes/medicine/laureates/2015/press.html ).

[2]  Nobel Prize, 2015.  DNA repair – providing chemical stability for life.  The Nobel Prize in chemistry 2015, Popular science background (see: http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2015/press.html ).

[3]  Nobel Prize, 2015.  The chameleons of space.  The Nobel Prize in physics 2015, Popular science background (see:http://www.nobelprize.org/nobel_prizes/physics/laureates/2015/popular-physicsprize2015.pdf ).

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU 

                                                          UNDER THE WEBSITE TITLE

 

A JACKPOT FOR SCIENTIFIC RESEARCH IS CREATED BY JAMES E. AND VIRGINIA STOWERS!  PART I.

 

Cover of the 2007 autobiography by James E. Stowers with Jack Jonathan. Published by Andrews McMeel Publishing, and available from many booksellers on the internet. (http://dr-monsrs.net)
Cover of the 2007 autobiography by James E. Stowers with Jack Jonathan. Published by Andrews McMeel Publishing, and available from many booksellers on the internet. (http://dr-monsrs.net)

 

James E Stowers, Jr. (1924-12014) must have understood exactly what are the very biggest problems and impediments for modern science before he and his wife founded and generously financed a wonderful new research institute.  This large research center provides a dramatic new model for the funding of scientific research that avoids the dreadful problems now damaging science at universities.  Part I will briefly relate his interesting history and the unusual organization of the Stowers Institute for Medical Research.  Part II will explain in detail why this new direction for supporting scientific research is so unusual, very worthy of emulation, and giving hope that the dying science in modern universities can be rescued.

What sort of person was Jim Stowers?

Jim Stowers was born, raised, and educated in Missouri.  Since he recently passed away at age 90, many publications describe his life story [e.g., 1-3].  With his father and grandfather being physicians, he first studied for some years at the University of Missouri Medical School before entering the US Army Air Force where he served as a fighter pilot in WW2.  When back home, young Stowers became a business entrepreneur.  In 1958 he set up Twentieth Century Mutual Funds, which concentrated on serving individual people; this private company grew under his leadership to later be renamed American Century Investments.  That financial business was very successful and his personal fortune grew substantially as the firm became one of the largest mutual fund companies in the US.

Jim Stowers has co-authored several popular books including an autobiography (see image above under the title).  He and his wife, Virginia, a professional nurse, have several children and grandchildren.  Jim and Virginia Stowers each were stricken with cancer, but both fortunately became cancer survivors and dedicated philanthropists for science.  In 1994, they targeted high quality science by founding the Stowers Institute for Medical Research in their hometown, Kansas City, Missouri.  Their personal donations and endowment (Hope Shares Endowment) total around 2 billion dollars!  Jim Stowers is quoted as saying, “My wife and I wanted to give back something more valuable than money to the millions of people who made our success possible, and we think that through science is the best way we can do it” [2].

A good recent video nicely illustrates the life and activities of Jim Stowers; “James E. Stowers, Jr. Tribute Video” is from American Century Investments, and is available on the internet at:  https://www.youtube.com/watch?v=P3g531Fwi64&feature=youtu.be .

The Stowers Institute for Medical Research [1-3]. 

Since its opening in 2000, the Stowers Institute has grown to now have 22 research programs and over 500 research workers.  Over 150 research projects by in-house scientists currently involve 75 postdocs, 58 graduate students, 80 research technicians, and 73 support scientists.  In 2012, The Scientist magazine announced that their annual survey had found the Stowers Institute to rank in the top 3 places for scientists to work worldwide.  Dr.M encourages everyone to take a look at the fascinating website of the Stowers Institute at:  http://www.stowers.org/ .

The mission of the Stowers Institute is to conduct the highest quality scientific research in order to find and understand the secrets of life.  By focusing innovative research on genes and proteins it aims to contribute to the betterment of people by its discoveries relating to the causes, treatments, and prevention of diseases.  The Stowers Institute has a number of unusual features distinguishing it from other biomedical research centers.  Unlike all universities, it is self-supported from the very large endowment from Jim and Virginia Stowers; this means that its faculty-level scientists do not need to spend time worrying about the vagaries of research grants, and instead can concentrate on vigorously doing significant research work.  The size and purposeful organization of the endowment funds will generate ongoing income for the future expenses of this major research center.

Another unusual characteristic of the Stowers Institute is that its multidisciplinary teamwork-based approach is directed onto pure basic research (i.e., to be able to advance detection and clinical treatment of cancer and other difficult diseases, it is necessary to first understand very much more about the activities of genes and proteins in normal and pathological cells).  The Stowers Institute is physically organized to facilitate internal collaborative interactions, and provides the many support services and facilities needed for research operations by its principal investigators (e.g., core labs, shared research equipment, technology centers, etc., with each staffed by technical experts).

Two good recent videos show the Stowers Institute and its activities for science.  “NBC features the Stowers Institute for Medical Researh” is from American Century Investments, and is available on the internet at:  https://www.youtube.com/watch?v=dMRIrk9nW8k .  “The Stowers Institute for Medical Research – The Local Show” from station KCPT shows some research scientists in action at the Stowers Institute; it is available at:  https://www.youtube.com/watch?v=1quFJfeuG0o&spfreload=10 .

The BioMed Valley Discoveries organization. 

The Stowers Institute, which features non-clinical basic research, is affiliated with the nearby BioMed Valley Discoveries, Inc.,  also funded by the Stowers endowment.  This company (see:  https://biomed-valley.com ) features applied pre-clinical and clinical research, by conducting new drug trials and clinical research investigations stemming from the basic findings at the Stowers Institute.  Emphasis is given to translating advances from pure basic research into new and better clinical practices at the bedside of patients.  It does not hesitate to work on disease-related projects considered unprofitable by the large pharmaceutical companies.  Success in its ventures presumably will lead to later commercial developments that will add more funds to the Stowers endowment.

Concluding remarks. 

Everyone must admit that Jim and Virginia Stowers have made a big difference to biomedical science in the US.  The Stowers Institute for Medical Research stands as a successful and inspiring new model for promoting research advances and science progress; this will be discussed in more detail in Part II.  The payoff for the public will come later when new findings generated from innovative basic research at the Stowers Institute result in development of more effective clinical treatments for human diseases.

 

[1]  The Stowers Institute for Medical Research, 2014.  James E. Stowers, Jr.  Available on the internet at:  http://www.stowers.org/James-E-Stowers .

[2]  American Century Investments, 2014.  Innovator and philanthropist dedicated life to helping others.  Available on the internet at:https://corporate.americancentury.com/content/americancentury/corporate/en/press/news-releases/2014/stowers-tribute.html .

[3]  E. A. Harris, The New York Times, 2014.  James E. Stowers, Jr., benefactor of medical research, dies at 90.  Available on the internet at: http://www.nytimes.com/2014/03/19/business/james-e-stowers-jr-benefactor-of-medical-research-dies-at-90.html .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU 

                                                          UNDER THE WEBSITE TITLE

 

MORE HIDDEN DISHONESTY IN SCIENCE IS UNCOVERED! 

 

More dishonesty in science is uncovered! (http://dr-monsrs.net)

More dishonesty in science is being uncovered!  (http://dr-monsrs.net)

We have previously looked at dishonesty in research and the corruption in modern science (see: “Introduction to Cheating and Corruption in Science” , and “Why Would any Scientist ever Cheat?” ).  Unethical conduct by university scientists is driven by their constant large job pressures to obtain more grant awards and to publish more research reports.  The hyper-competition for acquiring research grants (see: “All About Today’s Hyper-competition for Research Grants” ) actually is the major cause for cheating on applications for research grants by today’s faculty scientists.

Corruption and dishonesty in science commonly are thought to be very infrequent.  Due to the great difficulty in detecting and proving dishonesty, the actual number of miscreants remains quite unknown.  Nevertheless, new cases of proven misconduct by research scientists continue to pop up every year.  Today’s article examines yet another newer kind of dishonesty and corruption in modern science.

How do scientists publish the results of their research studies? 

Traditionally, scientists compose research reports after finishing the analysis of their experimental data, and then submit this manuscript to a professional science journal.   The journal editor, who is usually a renowned senior scientist, (1) supervises the peer review of each manuscript, comprising a critical examination by several selected expert referees (i.e., other knowledgeable scientists), (2) decides about publication, rejection, or required revision, and (3) later notifies the submitting author of the final decision.  This critical review functions to prevent publication of poor or false data, misleading or incorrect statements, mistakes, and unwarranted conclusions.  The process ofmanuscript revision permits authors to add missing items, remove extraneous or incorrect content, correct other mistakes, and, respond to questions and criticisms from the reviewers and the editor.  The ultimate role of the journal editor is to safeguard science and research.

Background to dishonesty with publishing scientific research results in journals. 

Science journals and publishers, as well as scientists, have established requirements for this publication process, so it is as objective and honest as is humanly possible.  These standards now include requiring explicit statements by the author(s) about possible conflicts of interest or financial involvements, and the actual work done by each listed co-author.  Some science journals also require a pledge of originality, certain statistical testing of research data in the manuscript, presentation or availability of all the experimental data, etc.  This publication system mostly has seemed to work quite well for preventing dishonesty by scientist authors, but it must be suspected that many instances of dishonesty remain undetected.  Certainly, some big mistakes in examining and publishing science manuscripts do continue to occur (see: “A Final Judgment is Given to Dr. Haruko Obokata: Misconduct of Research!” ).

Dishonesty in the publication process for research reports recently has been highlighted as involving the many conflicts of interest in the critical reviewing of submitted manuscripts [e.g., 1-6].  The total integrity of the expert referees always has previously been assumed, and several reviewers are assigned to examine each manuscript.  However, incidents now have been uncovered where the appointed referees included some who had a known or hidden association with the author(s); other recent cases show involvement of false reviews and of commercial concerns that supply these [e.g., 1,5,6].  The peer review of manuscripts is designed to prevent fraud, mistakes, inadequacies, and misleading conclusions from being published.  When scholarly reviews are compromised, independent and honest judgments of science manuscripts by journal publishers could not be conducted.

Cheating in the review of manuscripts is difficult to detect unless someone blows the whistle, or some other expert happens to spot a specific error or hidden conflict of interest and has the guts to make official inquiries.  In some of the recently revealed cases, the compromised evaluation of manuscripts appears to have been undertaken intentionally in an organized deceitful manner [e.g., 4-6].  Increasing concern about unethical manipulation of the publication process has resulted from high numbers of retractions of published articles and revision of standards for getting scientific research results published [e.g., 5,6].  Any manipulation of the manuscript evaluation  process is completely unacceptable because that permits bad data, false data, wrong statements, and unwarranted conclusions to be published, thereby undermining the very integrity of science.  Any scientist, including journal referees, can make an honest mistake in judgment, but a positively- or negatively-biased review of a manuscript is not some mistake, and is itself a misconduct.

Dishonesty in publishing medical research reports. 

Journals publishing clinical research results seem to draw more attention to problems in the manuscript review process [e.g., 1-4], and could be more frequently compromised than journals publishing research results from basic science.  This is unavoidable due to the unavoidable involvement of the medical journals with the financial interests of big pharmaceutical companies.  Medical science journals publishing results from clinical research about new treatments and new pharmaceutical agents have long been trying to ensure that they are extra careful in reviewing manuscripts.  This is particularly so where scientists working at pharmaceutical research labs, or research physicians in medical schools and hospitals, are authoring a science report about clinical trials where new agents are investigated and evaluated.  Following the later review and approval by federal regulators, decisions about publication in clinical journals make a big difference for the amount of future usage of these agents by practicing physicians; publication of such reports thereby has a strong influence in determining the size of the manufacturer’s profits from sales.

Cheating in clinical science journals [2-4] involves manuscript reviewers who knowingly ignore or do not intercept data that is questionable and conclusions that are unwarranted by the data shown. Positively-biased peer reviewers who recommend immediate publication with no changes required, negate the entire purpose of the manuscript review process.  Such dishonesty on manuscript reviews for clinical journals might well be more common than anyone has ever dared to think.  Two very experienced and well-known editors of the most totally prestigious medical journals recently issued amazing statements that they believe this type of cheating is very frequent.  Dr. Marcia Angell, ,former Editor-in-Chief of The New England Journal of Medicine, wrote in 2009, “It is simply no longer possible to believe much of the clinical research that is published … ” [2].  Dr. Richard Horton, current Editor-in-Chief of The Lancet, wrote in 2015, “… much of the scientific literature, perhaps half, may simply be untrue.” [3].  Both  these dramatic statements are truly shocking!  If the manuscript review process really is so flawed and manipulated as is proposed by 2 very experienced editors, then it is likely that many manuscript referees themselves must be actively dishonest participants in fraudulent science.

Concluding remarks. 

The recent explicit statements made by very renowned editors of 2 top medical science journals [2,3] make it shockingly obvious that cheating by scientific researchers  might be very much more frequent than anyone has previously guessed.  For university research scientists, this unethical conduct mostly is stimulated by their very strong job pressures; for medical research scientists, this unethical conduct mainly is stimulated by hopes for financial gain.  Both situations are improper, and are very bad for science and research.  The holes created by multiple conflicts of interest in publishing of science journals must be plugged.

The ultimate basis for all dishonesty in science is normal human nature.  That fact makes it especially difficult to stop or eliminate this behavioral problem (see: “Why is it so Very Hard to Eliminate Fraud and Corruption in Scientists” ).  Only the most sincere personal dedication by scientists to total honesty (i.e., via more intense education about ethics), much more vigorous efforts to detect cheating and dishonesty (i.e., by journals and granting agencies), and, much harsher penalties for proven misconduct (i.e., from the employers and granting agencies) can give hope that unethical conduct by professional scientists can be lessened and even stopped.

[1]  H. Marcovitch, 2010.  Editors, publishers, impact factors, and reprint income.  PLoS Med., e1000355.  Available on the internet at:  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964337/ .

[2]  M. Angell, 2009.  Drug companies & doctors: A story of corruption.  The New York Review of Books, January 15, 2009 issue.  Available on  the internet at:  http://www.nybooks.com/articles/archives/2009/jan/15/drug-companies-doctorsa-study-of-corruption/ .

[3]  R. Horton, 2015.  Offline: what is medicines 5 sigma?  The Lancet, April 11, 2015  385:1380.  Available on the internet at:  http://www.thelancet.com .

[4]  A. Walia, 2015.  Editor in chief of world’s best known medical journal: half of all the literature is false.  Global Research, May 23, 2015.  Available on the internet at:  http://www.global research.ca/editor-in-chief-of-worlds-best-known-medical-journal-half-of-all-the-literature-is-false/5451305 .

[5]  F. Barbash, 2015.  Major publisher retracts 43 scientific papers amid wider peer-review scandal.  The Washington Post, Morning Mix, March 27, 2015.  Available on the internet at:  http://www.washingtonpost.com/news/morning-mix/wp/2015/03/27/fabricated-peer-reviews-prompt-scientific-journal-to-retract-43-papers-systematic-scheme-may-affect-other-journals/ .

[6]  J. Achenbach for the Washington Post, 2015.  Scandals prompt return to peer review and reproducible experiments.  The Guardian, February 7, 2015.  Available on the internet at:  http://www.theguardian.com/science/2015/feb/07/scientific-research-peer-review-reproducing-data .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU 

                                                          UNDER THE WEBSITE TITLE

 

QUESTIONS ABOUT SCIENCE FROM YOU TO Dr.M, AND FROM Dr.M TO YOU! 

Asking questions, answering questions, and questioning answers are vital for education! (http://dr-monsrs.net)

Asking questions, answering questions, and questioning answers are vital for science education!   (http://dr-monsrs.net)

 

Following my recent posts with Q&A for assistant professors in science” , I now present some interesting  questions and answers between you and me!

Dr.M, please tell me why should I care anything about science and research?  It just doesn’t matter to me! 

Dr.M:  It will matter a whole bunch when you run into health problems, when new wars break out using weather as a destructive weapon, when TVs listen to your every spoken word at home, and, when it finally is admitted that you really are poisoning yourself and your children by what you eat and drink!  Due to the very deficient public education about science, you and most other adults have no idea what scientists do or how many of your everyday activities involve the products of science and engineering.  It will be fun for you to explore science; for starters, look on the internet for “NASA pictures from outer space” and, “3-D printing”!

Dr.M. asks you:  What is the thrill of research discovery for a scientist? 

Typical soccer mom:  It is just the same as finding a $50 bill when you are walking from your car into a supermarket!  I guess that research is fun and discovery is pure luck; it looks just like the lottery to me!  Discovery by scientists means they then are famous, can write a textbook, and get rich!

I love to watch science on TV for many hours almost every day because it all is so amusing!  Dr.M, can you please recommend which are the best science shows? 

Dr.M:  Most adults see science and research only as being some fantastic amusement.  Unfortunately, none of these science-as-entertainment shows deal with real scientists or real research. They are only for mindless amusement, and have much too much emphasis on who is the star researcher of the day, what horrible disease might be cured, and how science could solve some new global calamity.  Since I see all of this idiotic garbage as being a total waste of time, I will not recommend any to you!

Dr.M asks an Assistant Professor:  If your university employer turns down your application for tenure, what are you going to do? 

Assistant Professor:  Nobody taught me anything about how to get tenure in grad school.  I thought it was almost automatic so long as you were funded by research grants.  I know I will never win a Nobel Prize, but I still believe I am a successful research scientist!  If I didn’t enjoy lab research so much I would simply quit this nonsense and find a new job in the stock market or selling computers!

My husband and I want our young children to learn about science.  What is the best way to help them do that?  Do you think we should buy them a chemistry set, Dr.M? 

Dr.M: All young children have a strong curiosity, and they often focus that on what they see, hear, smell, taste, and touch.  For these youngsters, encourage them to explore andexamine nature, and to learn about the world in your backyard or town (e.g., insects, birds, flowers, seeds, leaves, ponds and rivers, stars, beaches and soil, pollution, lightening, snow, garbage dumps, our moon, stars, etc., etc.).  Much can be done with little expense!  As they grow up they can use a magnifying glass, camera, and personal computer, all of which involve science and engineering.   A chemistry set is good for somewhat older children who show a special interest and liking for chemistry; however, for young kids having no affinity for chemistry it will probably only be a potentially dangerous toy (e.g., What does that taste like?).  Let your kids decide for themselves what they are interested in!

I looked on the internet for info about nanomaterials after reading one of your posts, Dr.M, but I just do not understand most of what I read.  What should I do?

Dr.M:  This situation is due to unfortunate general deficiencies in  science education.  Recognize that you have selected a large topic!  I suggest that you will find it easier if you study only a single more specific subject within the world of nanomaterials (e.g., carbon nanotubes, buckyballs, nanomedicine drug carriers, nanomachines, etc.).  Even without much background, you should be able to understand some descriptive articles about that subject in any Wikisite on the internet; be sure to also take a look at internet diagrams and videos for whatever subject you choose.

Dr.M. asks you:  Do you believe scientists should receive a much smaller paycheck than do star baseball players? 

Teenager:  What are the salary numbers?  Don’t star scientists get several million each year?  Postdocs must be equivalent to minor league players in baseball; what do they get?  Baseball players deserve millions because they bring in many more millions for their team owner.  Good research scientists should be paid at least as much as are professional baseball players!

I haven’t looked at any science since I was in high school.  Now I just retired.  Tell me, Dr.M, why should I spend any time with science now? 

Dr.M:  Science is not something you have to do, but it sure makes life more interesting!  Have you ever heard of 3-D printers?  Do you realize what they can create?  Don’t you wonder how they work?  Aren’t you curious about why your knees now are causing you pain, or why some new medicine might magically be able to give you full mobility again?  Do you realize that your children might not retire until age 80, and could live to be over 100 years old?  All of that is science in action!  Pick any topic that has some personal interestfor you, and see what videos are available about that subject on the internet; I can almost guarantee that you will find something fascinating!

Dr.M. asks you:  Do you admire any scientist? 

College undergrad:  No, because I don’t know any scientists, and have no idea what they have done with their research.  I don’t know any Nobel Prizers or local scientists.  They all mean nothing to me!

I tried to read about research on new batteries, but I just cannot understand all the special terms and concepts.  Are there any translations available just for ordinary folks, Dr.M? 

Dr.M:  You are totally correct that all the special terminology creates a barrier preventing many people from reading about science.  The closest to actual translations are simplified articles found in some science magazines and news websites.  Take a look at such internet sites as: “ScienceNews for Students” (https://student.societyforscience.org/sciencenews-students ), and “Popular Science Magazine” ( http://www.popsci.com/tags/science ).   Good luck!

Dr.M. asks you:  What is the purpose of scientific research? 

Hollywood celeb:  I really have absolutely no idea, but I do love to watch science on TV!  It’s just so funny!  Research scientists must be mad!  I always laugh my head off and cannot believe these guys and gals are for real!

I appreciate science and would like to help scientific research, but I am not wealthy.  Tell me, Dr.M, how can I help out? 

Dr.M:  Even small financial contributions to promote scientific research always are welcome at science research organizations, universities, high schools, science societies, research workshops, museums, and other special science organizations.  Some people like to donate via contributions to crowd-funding organizations (i.e., search with any internet browser for “crowdfunding for science”).  Money-free ways to support science and research are to attend public presentations and discussions by professional scientists, or, sign up for a free subscription to specialized science journals, magazines, and websites (e.g., Microscopy Today ( http://www.microscopy-today.com ), “Microscopedia” (http://www.microscopedia.com ), SciTechDaily ( http://scitechdaily.com/ ), and, “Chemical and Engineering News” (  http://cen.acs.org/magazine/93/09334.html ).  You also can volunteer to personally participate in research projects at a nearby field site or laboratory.  Last, but definitely not least, encourage your own children and young relatives to  have some interest in science!

Dr.M. asks you:  Why can’t scientists agree about whether global warming is real? 

Aunt Maggie:  I guess they just love to argue!  Why don’t they do more research and less yapping?  Last winter was really cold, so I don’t believe whatever they say!  Maybe they are arguing about nothing?  It doesn’t matter much to me, anyhow!

Dr.M. asks you:  Why do some scientists cheat? 

Uncle Joe:  Probably they are after more money!  There are only small penalties if they do get caught, so why shouldn’t they take a chance on getting rich faster?  Everybody else today cheats at their work,  so why shouldn’t scientists?

Dr.M, Why won’t you allow any comments and e-mails on your website?

Dr.M:  I refuse to waste my valuable time dealing with lonely souls, morons having an empty life, or hungry entrepreneurs, as announced on November 14, 2014 (see: “Special Notice to All from Dr.M!” ).  Although It was necessary to do that, if 99.9% of 100,000 comments to you were ads for other websites or duplicate messages disguised as comments, then I believe you also would ban them.  It still amazes me that I used to receive multiple word-for-word identical messages from several different continents!  The blogosphere certainly is polluted by spamming on botnets!

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU 

                                                          UNDER THE WEBSITE TITLE

SOME Q&A JUST FOR ASSISTANT PROFESSORS IN SCIENCE!

 

Assistant Professors now Spend Most of their Workday Applying for Research Grants! (http://dr-monsrs.net)

Assistant Professors now Spend Most of their Workdays Applying for Research Grant Awards!     (http://dr-monsrs.net)

 

Assistant Professors in science are younger university faculty who work on research, teaching, and assorted BS.  They often also are busy with marriage, buying a house, and starting a family.  After obtaining their first research grant award as an independent investigator, they begin supervising graduate students in their area of science expertise.  The twin career targets of Assistant Professors are to get their research grant(s) renewed, and to obtain tenure.

This article is only for Assistant Professors!  It uses a question and answer format to give my advice about handling certain tasks and problematic situations commonly faced by junior faculty in any area of science.  This advice is based upon my own personal experiences and observations as a science faculty member in several universities.  I hope these discussions will prove interesting and useful to you!

Why is my salary so low as an Assistant Professor? 

Assistant Professors are at the bottom of the academic ladder!  Some prestigious universities limit the salaries of their junior faculty to inappropriately low  levels.  Upon being promoted to tenured rank, the former Assistant Professors then get a major increase in salary.  The usual explanation is that universities want junior faculty to prove their institutional commitment, and they need to keep all their senior long-term employees happy.  I feel that this policy actually is just another part of universities always trying to maximize their financial profits; the same self-centered business mentality also explains why some of these same institutions only infrequently award tenure to their junior faculty!

Upon being hired, I was given only a very small lab.  I now have a good first grant with one postdoc and 3 new grad students, and so need more lab space.  How can I get this without upsetting other faculty here? 

The first part of your question is easy: get a second research grant award and you will receive assignment of more lab space.  If additional space is not offered, then you should realize that your institution probably is not very serious about scientific research.  Tell your departmental chair that you see no choice but to move, since your grant-supported research is being hindered; that might cause a revision of your research space assignment.  Otherwise, take appropriate action to find a better employer and give yourself a greater chance to be satisfied with your career as a scientist.

The second part of your question is totally difficult, because lab space always is tight, and all science faculty are competing with each other for space assignments.  If any faculty member is given additional space for their research activities, then someone else’s assignment must be reduced; even if it is completely obvious that you fully  deserve more lab space, human nature says that the person losing space will always have a grudge against you.  Try to find some senior professor who has your respect, and ask for advice about this very sticky situation.

Are research collaborations important for Assistant Professors? 

The short answer is, “yes indeed!”.  External collaborations will help your research  publications become more solid, and these coworkers usually will be your supporters for promotions and grant reviews.  Internal collaborations within your department and your university often are the start of developing a small research group, and are particularly valuable when you are being considered for promotion to tenure.  Collaborations are good both for science and for business!

I just got re-appointed as an Assistant Professor.  What should I do in order to become tenured? 

The traditional answer to your question is that achieving excellence in research and in teaching will qualify you to become tenured.  Those activities will help, but they certainly do not explain either why some junior faculty are tenured despite their weak accomplishments, or why some accomplished candidates are denied a promotion to tenure.  My best answer to your question is to pass on the advice that one of my more senior colleagues at a different university gave me when I asked him the same question: “What you really have to do is to fit in with the rest of the faculty in your department.  Make them see that you are valuable to them.”  I believe he is 100% correct.  Both grants and effective teaching have importance, but your ability to be part of the group is what will really make your Chair and other faculty support your promotion to tenured rank.

Is it necessary to become tenured? 

In principle, academic tenure is a promise that you will never be fired from your job without just cause, thereby guaranteeing your freedom of thought and speech.  Of course, the very best long-term job security is not tenure, but is to have such good professional success that other quality institutions would be delighted to hire you.  I know one unusual scientist who decided to forgo tenure because it was such a bother to go through the evaluation process; he was independently wealthy and requested to continue working at his university without being tenured.  His employer said no way!  Eventually there was a crisis situation with his packing up all his stuff in preparation for moving (i.e., several other institutions wanted to hire him!).  His employer finally gave him a very expedited review and promptly announced that he now was tenured.   Thus, the actual answer to your question is “yes”; however, do not forget that the soft-money faculty at universities are not tenured.

I am fortunate to have acquired several research grant awards.  Instead of being considered for tenure, can I just switch into a soft-money position?  That move will get me a higher salary than my hard-money position! 

Making such a switch would be quite unusual and will be questioned for the rest of your career.  I can only suggest that you should make a written list of all the positive and negative features for making that change, and then debate with yourself what you should do.  It is worth noting that many scientists working on soft-money positions in both universities and industries are not tenured, but still  have a good and productive career.  Their employment actually has quite a lot of security without any tenure so long as they always perform well and fulfill the needs of their job situation.

After 6 years working as an Assistant Professor, my application for promotion to tenure was unexpectedly turned down!  What the hell am I supposed to do now? 

Think clearly about how you will answer the following key questions: (1) If that decision would be reversed, would you now want to stay on as a faculty employee? (2) Previous to this negative decision, did any other institutions ever voice an interest in hiring you?  (3) If you could magically be hired in any position at any location you wish, what would you work on and where would the new employer be located?  Your answers will indicate: (1) if you want to stay at your present job site, (2) what are your best opportunities for a new job in academia, and, (3) how much you still want to do research work at some university, versus switching into a research position in industry or a science-related job outside of universities (see: “Other Jobs for Scientists, Part II” , and, “Part III” ).

Having to move saves some scientists from lengthy dissatisfaction and endless emotional turmoil!  Do try to calm down and clear your mind so you can better decide what you really want to do with the rest of your life and career.  I wish you good luck!

I was just turned down for tenure, but I far outperformed another Assistant Professor who received tenure!  Should I file a lawsuit about my unjust decision? 

Mistakes about tenure are made rather frequently, so welcome to the club!  My advice is to try to picture yourself some years into the future … if you win a lawsuit and then are given tenure, will you really be satisfied and at ease 10 years from now?  I doubt it, and suggest that you will still be upset.  Recognize that lawsuits in academia take nearly forever to be adjudicated (e.g., several to many years), and always are very expensive for the initiator (i.e., you might have to sue an entire state or city if your university is part of some government).

Concluding remarks.

Assistant professors undergo many trials and tribulations in addition to working on their research and teaching activities.  It is not an exaggeration to say that they are always under observation,  evaluation, and pressuring by someone (e.g., their Chair, the Deans, administrators, graduate students, postdocs, classroom students, fellow teachers, fellow committee members, manuscript referees and editors, reviewers of grant applications, officials at granting agencies, safety office, etc., etc.).  Those who continue to be active and productive researchers while dealing with all this crap certainly deserve lots of credit!

Tenure is not everything, does not always protect freedom of opinion and speech, and, is not much used by faculty for its main purpose.  It often is misused and abused,  both by universities and by faculty.  I personally know an Assistant Professor who became tenured, and from the very next day on he never again stepped into his lab; how utterly disgusting!

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU 

                                                            UNDER THE WEBSITE TITLE

 

SOME Q&A JUST FOR POSTDOCTORAL RESEARCH FELLOWS IN SCIENCE!

 

Look! I'm Getting Paid to have Fun Doing Research! (http://dr-monsrs.net)

Postdocs are Paid to have Lots of Fun Doing Research!!    (http://dr-monsrs.net)

 

By producing new research publications in science journals, postdoctoral fellows try to grow their reputation as active young scientists full of promise (see: “Postdocs, Part 2″ ).  Postdoctoral researchers also typically solidify their identity with a given field of science.  One or more postdoctoral training periods usually are followed by acquisition of professional employment in universities, medical schools, industries, science-related organizations, new small businesses, etc.

This article is only for postdocs! It uses a question and answer format to offer my advice about some common problematic situations faced by postdocs in any area of science.  This advice is based upon my own experiences and observations during 2 postdoctoral appointments, and later as a faculty researcher and teacher.  I hope all of this will prove interesting and useful to you!

What practical accomplishments should I work for as a Postdoc? 

Number one is to make research discoveries of importance, so that you will be first author of publications in major science journals.  Number 2 is to expand your technical expertise with research instruments, experimental approaches, and, subjects being investigated (e.g., other minerals, other stars, other life forms, other bases for chemical synthesis, etc.).  Number 3 is to make yourself known to leaders in your chosen research field; this often will provide more opportunities later when you are seeking a job opening, a collaborator, or, advice and counsel.  All of these will help establish your identity and reputation as a professional scientist.

How can I work on my own special subject of interest as a postdoc? 

This common question is misplaced, since you should have settled this before accepting any appointment as a postdoctoral fellow (see “Postdocs, Part 2″ ).  Once your position starts, your options are limited because you then are obligated to work on the research project(s) of your chosen mentor.  Recognize that all the skills and experience you acquire now with any research operations can be used sometime later to examine your own favorite research subjects.

Should I work only on a single research project as a postdoc? 

If your mentor approves, you can work on other projects, too, if they do not interfere with your primary research objective.  For example, you might contribute your expertise with some research instrument to the project of a fellow postdoc who does not know how to operate that, but needs the data.  These internal collaborations are a good way to get some extra publications and to increase your range of research experience.  But, remember what your chief effort always must be given to!

How can I, as a young postdoctoral researcher, get noticed by other scientists? 

You must take the lead! The number one way to get noticed is to publish important results of your research in good science journals; quality always gets noticed, and speaks for itself.  You should present research results every year at science meetings.  At meetings, you can invite a few selected scientists to come and look at your poster; if they have given an invited talk, find them and ask one or 2 well-phrased questions about their research.  Another good request is to ask for permission to show one of their published figures during your presentation of an abstract at a science meeting.

Should I take a second or third postdoctoral position? 

If you are committed to finding employment as a research scientist, but no suitable job openings are available, then the answer is “yes”.  With an additional postdoctoral period, you then will be able to continue doing research and will gain additional publications.  However, if you have not found a job because you are out-competed by other job seekers, you should look for additional training at another postdoctoral position so that will fill in your weak area(s).  There is nothing wrong with working as a postdoc for some longer time, provided you are not used as a technician or a slave.  If you can find a suitable mentor who values your work, has research interests like yours, and is well-funded, this can be eminently satisfactory; as a “Research Associate”, your salary will advance, you will publish as first author,  and you will not need to worry about getting research grants.

How can I learn about good job openings? 

As the saying goes, “Read Science (magazine) backwards!”.  Study all their listed jobs every week, so that you can discern who is offering jobs, what types of positions are available, and which job opportunities and requirements are prominent with different fields and different kinds of employers; there also are several other good sites listing science job openings on the web.  Annual meetings of science societies often have a job center listing current openings; in some cases, interviews are conducted at these meetings.  Let a few of your professional contacts (e.g., scientists familiar with your work, your former thesis advisor, members of your thesis committee, external collaborators, etc.) know that you are actively looking for a position; not all jobs are advertised, and your associates might bring a few of those to your attention.

What is most valuable in a postdoc’s curriculum vitae (c.v.) for landing a good job? 

Number one is peer-reviewed publications of your important research results.  Number 2 is how many research methods and instruments you have used and mastered.  Having given some guest lectures in a course could help in getting a university faculty job.  Attending advanced technical workshops can be a plus.  Applying for a patent, receiving a postdoctoral grant, or giving invited seminars always is impressive.  Customize your c.v. for each open position (i.e., an application for a university job is quite different from an application submitted for a job at an industrial R&D center).

What should I present for my job seminar?  

Present something that is interesting, very solid science, and not too controversial.  Include some results that are not yet published, and be absolutely certain to leave at least 10 minutes for questions from the audience before your scheduled time limit is over.  Remember that your audience must be able to comprehend everything you say, andmust see exactly how you and your research will fit into their local activities (i.e., not all employers want to hire a super hot dog researcher!).

How do I find out about the research grant system? 

First, ask your postdoctoral mentor and other local research grant holders to advise you about their strategy for meriting an award.  If your mentor reviews grant applications, request that you will be allowed to read one of them and then to also read their critique.  Second, carefully study the detailed instructions for writing a grant application put out by the several different federal granting agencies.  Third, if and when you feel up to it, spend one month to compose a practice grant application; ask your mentor to criticize it, and you then will learn very much that you now do not know! Lastly, study my recent article on“Unasked Questions about Research Grants for Science, and My Answers!” .

Why will I later have to spend so very much time with research grant applications?  I want to work on research, not on shuffling papers! 

The short answer is that science faculty in academia need to obtain money for their research expenses, and research grants are the traditional way to get that.  What makes this much more difficult nowadays is the intense hyper-competition for getting research grant awards (see: “All About Today’s Hyper-competition for Research Grants” ); every scientist is competing with all other scientists, and everything in a career as a university scientist depends upon getting and staying funded.  Recognize clearly that as a university scientist you also will be a business person (see: “Money Now is Everything in Scientific Research at Universities “ , and, “What is the Very Biggest Problem for Science Today?” )!

After my first postdoctoral job, I have decided that I will not work in a university.  I want a science-related job in business.  How should I apply for such? 

My best suggestion is for you to seek advice on good approaches from one or more scientists having exactly such a position.  Be rigorous in checking out all possible employers, and note who has been hired recently.  Before your interview, get facts and figures about each business, and then adapt your c.v. or resume to the specific company or opening.  Try to construct a few ideas whereby your science and research training will help them with their business activities and objectives.  Be aware that many large companies have an initial training period when  the new employee is fully instructed about their business and the employee’s role(s).

Concluding remarks. 

For many university scientists, their postdoctoral years were the best and most exciting in their entire career.  Work hard and enjoy it!

 

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU 

                                                            UNDER THE WEBSITE TITLE

 

SOME Q&A JUST FOR GRADUATE STUDENTS IN SCIENCE!

 

Graduate Students in Science Must be Very Clever! (http://dr-monsrs.net)

Graduate Students in Science Must Always be Very Clever!   (http://dr-monsrs.net)

 

Although each different graduate school has its own special flavor, they all provide specialized knowledge in a given field of science, and, organized 1:1 instruction about how to conduct research experiments and be a scientist.  Typically, graduate students learn a lot from courses and laboratory work, assemble and defend  a doctoral thesis, and, produce one or more research publications.  Graduate school usually is followed by intensive semi-independent research as a postdoctoral fellow.

This article is only for graduate students in science!  It uses a question and answer format to advise you about how to handle some common problematic situations in graduate school.  Further information and other opinions certainly should be sought from your fellow students, your official advisor, and any of your course instructors.   My advice is based upon my own experiences and observations as a graduate student and later as a faculty researcher and teacher.  I hope all of this will prove interesting and useful to you!

Why do I have to take yet more courses in graduate school?  I want to learn how to do research!    

Graduate school training provides a number of useful features needed by all research scientists: (1) classroom courses instill in-depth knowledge and advanced understanding about one or several areas of science; (2) laboratory courses provide detailed knowledge about research approaches and methods; (3) coursework with library and internet studies, and making oral presentations, give experience in explaining your research  and answering questions.  These are directly related to what you will do later, no matter where you will be employed.  Any advanced course including critical analysis of research investigations will increase your own skills with design of experiments, picking adequate controls, and drawing valid conclusions from a given set of experimental data.  You will learn the practice of doing good lab research when you begin work in the lab of yourthesis advisor.  Being a scientist is more than just performing experiments!

I’m not good with math!  Why must I take a statistics course?  

I strongly recommend that all graduate students should take a course in applied statistics because it will help deal with experimental design and data analysis.  You don’t have to become an expert, but you almost certainly will need to know how to use the basic concepts and procedures.

How should I pick my thesis advisor? 

Ideally, you have enrolled in a graduate school because you already picked one or several faculty scientists you want to train you.  If your choice is still open, then the following general criteria seem most important.  The best thesis advisor has: (1) a successful research career in the special field you are most interested in, (2) an active research grant (and preferably, this has been renewed), (3) a good record for training and placing graduate students (and postdocs), (4) ambition to excel in the special field of interest, and (5) room for you to work in their lab.  Discuss any questions or concerns with your selected professor before you begin.

What do research rotations accomplish?  It seems like a waste of time to me! 

Most of your research experience in grad school comes under the supervision of your thesis advisor.  Picking this person is an extremely important task that will follow you for the rest of your career.  Most schools require a rotation through the laboratories of at least 3 different professors; to be meaningful, each rotation should extend for 1-2 months.  Via these rotations, new grad students will learn what each supervisor is like, what research questions are being attacked in their lab, what instruments and methods are in use, what staff (technicians, postdocs, collaborators, and other students) are working in each lab, and, what each supervisor expects from their graduate student colleagues.  After these  rotations, the student should be able to decide who they want to study with; the faculty use this experience to evaluate students with regard to interest, level of energy, intelligence, aptitude to learn and acquire skills, and, mentality.  The rotations also provide initial entries into your list of methods and instruments you know how to use, so they are valuable even if you already know which professor you will select.

What do I do if there is no professor working on my main subject of interest?

First, admit that you have made a mistake!  You should have seen whether there were suitable mentors before you enrolled in any school.  Second, decide if you are willing to make some changes in your main interests so that you can work with faculty that are available.  Third, if not, then apply to transfer into another department or a different graduate school having one or more faculty scientists working in your area of interest.

What should my doctoral thesis accomplish? 

Successfully completing and defending a graduate school thesis is taken as proof that you are qualified to be a scientific investigator, a teacher of science, and an expert on some aspect of modern science. The findings from your experimental studies show what you can do in research, and are the first basis to establish your reputation as a professional scientist.  Any good thesis will provide you with one or more publications in professional science journals, and might also result in your obtaining a patent.  Successful defense of your thesis entitles you to be hired in a number of different employment situations.

My thesis advisor just had his grant renewal turned down, so I must hurry up to finish my project!  But, I only have worked on it for one year!  Help! 

You indeed have a difficult problem!  You must first discuss all possible options with your thesis advisor.  In some cases, there might be another professor working in a similar or related area who will let you continue your current research within their lab.  In other cases, you might have to move into some other area of interest, and then find a new thesis advisor.  Yet other possibilities include moving into a different department at the same graduate school, or transferring into another school.  Depending on all the logistics and the time limitations, it might be good to use what you already have done to first acquire a Master’s Degree with your present advisor.

I am half way to completing my doctoral thesis; how soon should I start looking for a postdoctoral position and for a job? 

I recommend starting both today!  You can never begin too early with these tasks!  At science meetings, observe what other scientists are working on, who is researching in your area(s) of interest, and who gives invited presentations.  Go up to some and ask a good question; if you have a poster, you can invite them to view it.  Take a look at the job openings displayed at science meetings, and, start deciding what kind of employment and which locations appeal to you.  Everything you do as a graduate student says what you are; this will be fully inspected when you later apply for a postdoctoral position or a job.

I have been a grad student for 6 years, and my thesis advisor wants me to do still  more work.  Maybe I will never be able to finish!  What can I do? 

This is a common problem!  Students always want to finish graduate school and start being a Postdoc as soon as possible, but thesis advisors want them to do a very complete and excellent job with their thesis research.  The goals of both parties are natural and good.  I know several grad students who finished only after 10 years of work!

I offer the following advice.  Above all else, try to maintain good relations with your thesis advisor, and recognize that this person knows more than you do about science and careers in science.  Discuss all with him or her, and try to get an explicit list of exactly what you still need to accomplish; then, get to work and monitor your own progress every month.  If that only produces more problems, then discuss your situation with one or more members of your thesis advisory committee.  I cannot say anything further because I do not know if you are wasting time, fully understand what is needed to get a doctoral degree, are getting good results from your experiments, etc.; your thesis committee should know all of this, so ask for advice from them.

Concluding remarks.   

Almost all graduate students encounter some perplexing situation(s) in graduate school.  Handling those challenges is part of your advanced education!  You do not have to take my advice, but you should carefully consider how and why your views disagree with my recommendations.  It often is valuable to discuss everything with a trusted faculty scientist or another graduate student (i.e., one attending a different school).  Good luck!

 

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU 

                                                            UNDER THE WEBSITE TITLE

 

 

A FINAL JUDGMENT IS GIVEN TO DR. HARUKO OBOKATA: MISCONDUCT OF RESEARCH!

 

Scientific research findings are not always valid! (http://dr-monsrs.net)

Scientific research findings are not always valid!   (http://dr-monsrs.net)

 

Unfortunately, some doctoral scientists cheat.  With the terrible job pressures  in working on research at modern universities, the temptation to take the easy way out by being dishonest is always present (see: “Introduction to Cheating and Corruption in Science”).  Examples of dishonesty in science continue to pop up almost every month [e.g., 1-4], and many more escape notice.  Fortunately, most professional scientists have good ethical standards and do not cheat.  The few corrupted scientists who are caught usually are penalized in a rather soft manner, and publicity always is minimized so as to avoid undermining the enormous trust that the public has for professional scientists.

This article presents the sad story of Dr. Haruko Obokata, a young Japanese researcher who now has been very thoroughly investigated and penalized for research fraud [e.g., 3,4].  This case is particularly worthy of attention because it dramatically illustrates what can make a scientist cheat (see: “Why Would any Scientist ever Cheat?” ), and the consequences that can follow later.

Background to the controversy about Dr. Obokata’s research. 

Dr. Obokata worked as a researcher at the Riken Center for Developmental Biology, one of the most prestigious research institutes in Japan.  She investigated “stem cells“, which are pluripotent cells that can be induced to become different normal cell types.  Medical science is very interested in stem cells for possible use in repairing and replacing damaged organs.  Dr. Obokata reported finding a simple and easy new method to produce many stem cells with 2 papers in the stellar science journal, Nature.  This research finding was a big surprise; her new method was totally unexpected, gave wonderful results, and was labeled as being revolutionary.  Dr. Obokata  became very famous overnight; many news stories about her spectacular research results were issued, and interviews with her were featured on television.  Soon after her publications appeared, other scientists eagerly tried to duplicate her reported results, but they all were not successful; this rapidly led to many questions about her amazing research findings and the truthfulness of her research.  For science, research results must be reproducible to be considered valid.

Due to the enlarging doubts raised about her research results, local investigations were undertaken, but these only produced more questions and more controversy.  Extensive investigations followed, and produced no verification of her new methodology.  Throughout this controversy, Dr. Obokata maintained that her research results were real, but she was not able to explain why other scientists could not duplicate her results.  Many coworkers, supervisors, and other researchers then were questioned as the large controversy expanded further.  Finally, Dr. Obokata was asked to duplicate her own published lab results at Riken while she was being observed by a panel of fellow scientists; after 8 months of work in the lab, the results of this definitive test were negative [3].  Just a few months ago, after almost 2 years of investigations by institutions and governmental bodies,  an expert panel in Japan finished their deliberations and issued a final verdict that Dr. Obokata was guilty of research misconduct [3,4].

Consequences of the guilty verdict for Dr. Obokata. 

This verdict now is finalized, the papers in Nature were retracted, and, Dr. Obokata has resigned from her position at Riken and been fined [3,4].  The penalties in this judgment also include reprimands for several of her supervisors and associates; one supervisor was so upset at the shame of this very public situation that he committed suicide at age 52 [3].  A number of high officials at the reorganized Riken were replaced in the accompanying administrative scandal; due to this widely publicized situation, the national government was stimulated to issue revised standards for research conduct and misconduct [4].

Many feel that the cause of Dr. Obokata’s unethical activities with data manipulation and fabrication once again lies in the intense pressures on academic scientists to make important discoveries, publish spectacular reports, and obtain more research funding.  The exact same pressures today are acting upon very many other university scientists all over the world; undoubtedly, some others also will succumb to the temptation to use dishonest means to overcome these job pressures.

Is this misconduct a general feature in science, or is it peculiar to certain cultures? 

As I have noted previously (see: “Why is it so Very Hard to Eliminate Fraud and Corruption in Scientists?” ), the ultimate cause of unethical conduct in scientific research is simply human nature.  Scientists are just like all other people in that they can and do make mistakes and wrong judgments.  Thus, I believe that this old problem of dishonesty in science is very general.  Human cultures certainly do influence their science.  In some countries, new doctoral theses complete with tables of data and full analyses are available for purchase.  In such  cases, more dishonesty must be expected later when the new doctoral scientist starts researching and publishing.  However, even large modern countries with very extensive good research operations still have ongoing problems with corruption and misconduct of research.  Thus, this general problem is not only due to culture or nationality.

The case with Dr. Obokata is somewhat less severe than another recent finding of large shocking misconduct at the University of Tokyo [e.g., 4].  These scandals led to  important changes in policies, awareness, and education about  science ethics in Japan.  I must explicitly note here that this problem is not peculiar to Japan!  I have no reservations in making that statement, since I know many honest scientists in Japan, and always am most positively impressed with the high quality of Japanese science.  These recent ethical scandals in Japan’s research enterprise are just like those in other modern countries.

What does this example of misconduct say about modern science?  

The events in Dr. Obokata’s case are typical for previous instances where cheating at research has been caught: (1) it takes a whole big bunch of time and effort to finally reach a verdict, simply because it is extremely difficult to ever prove dishonesty when the alleged perpetrator maintains insistence that the false results are really true; (2) the investigations always expand to include collaborators and coworkers, supervisors, reviewers and editors, and, the prevailing atmosphere for professional ethics at the institution(s) involved; (3) after a verdict finally is reached, all of science gets a bad name; and, (4) although reforms are made to prevent this from happening so easily, the actual causes for misconduct in modern science always remain unaffected.

Nobody ever seems to focus attention and reforms on the gigantic pressures faced by all scientists doing research in modern universities (e.g., get more research grant money, get more research publications, get more experimental results and more discoveries, get more research breakthroughs, etc.).  These are not simply job duties or expectations, but rather are constant worries for university scientists.  Failure to succeed in these efforts will have bad consequences for the career of any faculty scientist.  By not countering the actual causes of dishonesty and corruption the only possible expectation is that this problem for science will not only continue, but also will increase.  The case of Dr. Obokata is not unique; many other cheaters are never caught, and the pressures to be dishonest remain active throughout the entire world of science.

Concluding remarks. 

Dishonesty in science and cheating at research are ongoing very general problems that will not disappear due to wishful thinking.  Most cheating in science begins with a single individual, but soon spreads to involve associated research workers and administrators.  Much stronger penalties, much closer attention to detecting misconduct, and much better training about the necessity for total honesty in science are needed (see: “Why is it  so Very Hard to Eliminate Fraud and Corruption in Scientists?” ).  Cheating in order to get more research grant money is particularly liable to be increasing due to the overwhelminghyper-competition for acquiring research grants among modern university scientists (see: “All about Today’s Hyper-competition for Research Grants” ).

[1]  Barbash, F., 2014.  An obscure academic journal.  A memorable peer review scandal. The Washington Post, July 11, 2014, Morning Mix.  Available on the internet at: http://www.washingtonpost.com/news/morning-mix/wp/2014/07/11/the-most-brazen-peer-review-scandal-anyone-can-remember/ .

[2]  Barbash, F., 2015.  Major publisher retracts 43 scientific papers amid wider fake peer-review scandal.  The Washington Post, March 27, 2015, Morning Mix.  Available on the internet at: http://www.washingtonpost.com/news/morning-mix/wp/2015/03/27/fabricated-peer-reviews-prompt-scientific-journal-to-retract-43-papers-systematic-scheme-may-affect-other-journals/ .

[3]  Rasko, J. and Power, C., 2015.  What pushes scientists to lie?  The disturbing but familiar story of Haruko Obokata.  The Guardian , February 18, 2015.  Available on the internet at:  http://www.theguardian.com/science/2015/feb/18/haruko-obokata-stap-cells-controversy-scientists-lie .  SPECIAL NOTE:  This is an extremely well-written and very perceptive report.  All scientists should read it!  Ditto for grad students and postdocs!

[4]  The Japan Times, Opinion, 2015.  Blight of research misconduct.  The Japan Times, February 18, 2015.  Available on the internet at: http://www.japantimes.co.jp/opinion/2015/02/18/editorials/blight-research-misconduct .

 

 

GO BACK TO HOME PAGE    OR    SCROLL UP!   TO MENU 

                                                          UNDER THE WEBSITE TITLE

 

 

UNASKED QUESTIONS ABOUT RESEARCH GRANTS FOR SCIENCE, AND MY ANSWERS!

Answers are badly needed for the many questions about research grants in science! (http://dr-monsrs.net)Answers are badly needed for the many questions about research grants in science!      (http://dr-monsrs.net)
 

Research grants pay for all the many expenses of doing scientific research in universities, and now are the primary focus for faculty scientists.  Size and number of grants determines salary level, promotions, amount of assigned laboratory space, teaching duties required, professional status and reputation, and, ability to have graduate students working in a given lab.  Research grants typically are awarded to science faculty for 3-5 years; grant renewals are not always successful, or can be funded only partially.  Without continuing to acquire and maintain this external funding, it is basically impossible to be employed or doing research as a  university scientist in the United States.

This condition causes many secondary problems, all of which impede research progress.  In my opinion, the very worst of these is the hyper-competition for research grants (see:“All About Today’s Hyper-competition for Research Grants” ).  Every scientist  is competing with every other scientist for an award from a limited pool of money.  For university scientists, this activity consumes giant amounts of time that would and should be spent on research experiments, burns up large amounts of personal energy, distorts emotions and disturbs sleep,  causes and encourages dishonesty, and, is very frustrating whenever  applications are not successful.  I previously discussed how all this causes so many university scientists to be dissatisfied with their career (see: “Why are University Scientists Increasingly Upset with their Job?  Part I” , and, “Part II” ).

This essay gives questions about the present research grant system that usually are notasked, and my best answers to them no matter how disturbing that might be.  I have phrased these questions just as they would be given by non-scientist readers of this website.  Everyone should know that I have reviewed grant applications as a member of several special review panels, held several research grants (for which I am very thankful!), and, also had several of my applications rejected.  Hence, my responses to these questions are based upon my own personal experiences as a faculty scientist.

Maybe the hyper-competition actually is good!  Isn’t it true that the very best research scientists always will be funded? 

Not always!  Sometimes the “best research scientists” also get rejected, or are only partially funded; despite their status, they can get careless, arrogant, or too aged.  Nevertheless, leading scientists are favored to stay funded because  they understand exactly how the grant system works, and have easier interactions with officials at the granting agencies.  In my opinion, only indirect correlations exist between success in acquiring very many research dollars, and production of many breakthrough research results.  Excelling in either one says little about results in the other.

Do scientists doing very good research always get funded? 

Not always!  Getting a grant or a renewal always is chancy and never is certain, since this decision involves strategy, governmental budgets, contacts with officials at the granting agencies, which side of the bed reviewers get up from, and many other non-sciencefactors.  Young scientists spend very many years with their research training and early work as a member of some science faculty, but then can be abruptly discharged for having trouble or failing at this business task; remember that these scientists are trained to be researchers, and are not graduates of a business school!

Don’t university scientists mainly need to get good research publications? 

The main job of university scientists today is no longer to get good publications, but rather is to acquire more research grant funds!  I doubt that science graduate students ever intend to work for over a decade to become a faculty scientist just so they can spend their professional life chasing money (see: “What is the New Main Job of Faculty Scientists Today?” ).  But, that is exactly what the hyper-competition forces them to do!  For most researchers, the hyper-competition for grants in universities badly distorts what it means to be a scientist; hence, I believe it is very bad for science.

Aren’t scientists trained about how to deal with this research grant problem when they were graduate students or postdocs? 

There certainly are no organized sessions or courses in finance, commerce, or business given to graduate students in science, even though university science now certainly is a big business (see: “Money Now is Everything in Scientific Research at Universities” .

Isn’t there some way faculty scientists can avoid this situation? 

Yes indeed, but it ain’t so easy!  Switching to a research job in industry or to a non-research job outside universities will resolve this problem situation.  The main way  university scientists try to preclude this problem is to acquire 2 (or more!) research grants; then, if one award later is not renewed, the other one then will keep the faculty scientist’s career intact.  Of course, this strategy of seeking to acquire multiple research grants has its own costs and directly serves to make the hyper-competition even more intense.

Why not simply require all faculty scientists to get 2 research grants?  

This idea ignores the fact that running a productive research lab in academia takes up a huge bunch of precious time.  Faculty scientists with 2 research grants usually become so short of time that they must switch gears so as to function as a research manager, rather than continue as a research scientist.  Some managers even reserve one half-day per week where they are not to be interrupted for any reason by anyone while they work in their own lab.  Another fact to be recognized is that most university scientists today do not ever hold 2 concurrent research grants.

Isn’t there counselling and help given to faculty members who lose their grant? 

At some universities this now is done, thank goodness!  However, at many others, the affected professionals must try to get funded again all by themselves.  It is a sign of the vicious nature of the hyper-competition for research grants that any scientists who try to help a fellow faculty colleague (i.e., a competitor) necessarily are also hurting themselves.

Cannot some research experiments be done without a grant?  

This could be done, but it is not permitted!  Upon rejection of an application for renewal, faculty scientists soon lose their assigned laboratory space, thus precluding any more experiments; at some institutions, each then is viewed as a “loser” and is suspected of being a “failed scientist”.  I consider this system of “feast or famine” to be horribly ridiculous; nevertheless, it does show loud and clear what is the true end of scientific research in modern universities (see: “What is the New Main Job of Faculty Scientists Today?”).

Is there some other way to support science without causing such difficult problems? 

This is theoretically possible, but in practice it is nearly impossible because the present research grant system is so deeply entrenched.  There is a very large activation barrier to making any changes since universities and leaders at the granting agencies both are very happy with the status quo (i.e., universities get good profits from the research grants of their science faculty, and research grant agencies receive an increasing number of applications for financial support).  Although this question is discussed in private by university scientists, I am not aware of any open general discussions about trying out some alternative approaches to support research activities in science.

If the research grant system really is so troubled and has such awful effects, why don’t all the university scientists protest? 

Every university scientist holding a research grant knows better than to complain about being a slave in the modern research grant system, because they want to continue being funded.  As the saying goes, “Do not bite the hand that feeds you”!

My comments and conclusions. 

I see the present problems with the research grant system as being very unfortunate for science.  The current situation has bad effects on research progress and clearly is very vicious to some scientists.  This system is  strongly supported by both all universities and the granting agencies.  Any proposals to make any changes will be strongly opposed by all the beneficiaries of this system, including funded scientists working at universities.

My main conclusions are that (1) business and money now rule science, and (2) everything about scientific research at universities now is money (see: “Introduction to Money in Modern Scientific Research” , and, “3 Money Cycles Support Scientific Research” ).  I  certainly am not the only one to reach these conclusions (i.e., search for “money in science” on any internet browser, and you will see what I mean!).

Quality of experimental research, creative ideas for experiments, derivation of innovative concepts, and working hard with a difficult project are no longer very important.  All that matters now is to get the money!  All these negatives form a strong basis for why I regretfully believe that science now is dying (see: “Could Science and Research Now be Dying?” ).

 

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU 

                                                          UNDER THE WEBSITE TITLE

 

 

INTRODUCTION TO ART AND SCIENCE

 

Electron micrograph of one mitochondrion within a mouse liver cell (hepatocyte). The cytoplasm surrounding this organelle contains free polyribosomes, cisternae of rough endoplasmic reticulum, glycogen granules, and vesicles. May 20, 2015 © Dr.M (http://.dr-monsrs.net)

Electron micrograph of one mitochondrion within a mouse liver cell (hepatocyte). The cytoplasm surrounding this organelle contains free polyribosomes, cisternae of rough endoplasmic reticulum, glycogen granules, and vesicles.      May 20, 2015 © Dr.M   (http://.dr-monsrs.net)

 

As a scientist, I believe that I also am an artist!  My science is my art, and my art is my science!  I am not referring only to esthetic beauty of the output from scientific research, but also to the mental beauty found in numbers and equations, spectroscopic curves, theoretical concepts, and crystallography.  Science certainly is distinctive, but also has many similarities to art.

Similarities and differences between science and art. 

The standard opinion is that science and art are nearly opposite endeavors.  My own view is that  science and art often are interchangeable!  Art frequently is a representation of something real or imagined, and so is analogous to a model or hypothesis in science.  Art can be quite stylized (e.g., portaits), and so can the output of science (e.g., histograms of measurements).  Both art and science are produced by an individual or a small group of people, and usually reflect some of their special skills and personal characteristics.  A sculpture by a modern Italian artist differs in style from a sculpture produced by an Inuit artist even if they use the same stone and depict the same subject; such differences can be described with language and words for art, or with numbers and measurements in science.  Sculpted figures clearly are three-dimensional representations, and so are the detailed structural models for a virus.

Most artists like to produce something that is new, personal, and striking.  Scientists can have exactly this same goal for their research work!  Creativity has the same meaning for art and science.  Whether scientific research studies produce spectroscopy curves for a new nanomaterial, images of living genetically-modified cells, or, tables of numbers from astronomy and astrophysics, their output is quite beautiful for the eyes of scientists and also for those of many non-scientists.  Rather than create images from their imagination, as do some artists, scientists make them by skillful use of research experiments, instruments, and data analysis.

One very large difference between art and science immediately pops into view: science often is displayed in black and white, but art mostly is displayed with colors.  Some scientists purposely add colors to their grayscale images or data plots so as to make them more comprehensible and more interesting.  A very simple, but good, example of the significance of colors is given in the text figure below, shown both in its purely black/white condition (upper panel) and with one added color (lower panel).

Colored text_edited-1

The information or statement provided in these 2 versions is identical, but the human mind is definitely more attracted to and tickled by the one with color(s)!

Images from science can be seen as abstract art! 

People looking at graphic art often do not know exactly how this was constructed, yet they  either like or dislike the display.  Similarly, viewers seeing images from science often have zero understanding about what they are looking at or what it means; nevertheless, they will feel that one of several displayed images is prettier or more interesting than the others.  I believe that this phenomenon is directly similar to the emotional judgments of viewers (including scientists and other artists!) regarding a piece of abstract art where nothing at all is recognizable.  In both art and science, the emotional reactions of viewers are quite independent of their knowledge.

As one example of what I mean here, let us look together at an electron microscope image of a mitochondrion (see image shown under the title for this article).  That object is one of the energy-producing organelles found inside all nucleated cells of humans, onions, sharks, jellyfish, butterflies, yeasts, and protozoa.  All mitochondria (plural) have the same basic structure, but often differ in small details from one cell type (e.g., cells in salivary glands that produce and secrete saliva) to another cell type (e.g., islet cells in the pancreas making and secreting insulin).

Let’s say you have never before seen an image of a mitochondrion and had not even known they existed until now.  Despite this ignorance, when you first looked at the foregoing image, certain feelings popped into your mind (e.g., “how cute!”, “how bizarre!”, or, “does it bite?”).  You were reacting solely to the art within this science image!  You can convert your reaction to the science inside this same image simply by learning more about the parts, structure, and functional activities of mitochondria; then, when looking again at the same image you might feel “how interesting!”, or wonder “what happens in cancer cells?”.  The art and the science are both parts of this same display!

Beauty in science. 

For Dr.M, beauty in science is everywhere!  If one looks with a special light microscope at a solution of DNA while it is in the process of drying, one will see images that are exquisitely beautiful (see images and videos at:   http://biancaguimaraesportfolio.com/mssng/ ).  Many people will dispute my judgement, because they will say that chemicals or chemistry could not truly be beautuful and any apparent beauty is only some artifact or optical trick.  My answer is that this example has all the elements needed for artistic drama: special characters, different paths of movement, balance or imbalance, discrete stages of development, boundaries, suspense, stylized situations, and the possibility for unanticipated endings; further, the videos show the specimen and colors moving and changing similarly to a troop of dancers gliding about on a stage.  All of this easily can lead to a judgment of being pretty.  Can you see beauty here?

Good examples of striking beauty in science. 

A wonderful example of what I am trying to describe as “beauty in science” is shown in the collection of images from the Hubble telescope, taken as part of its astronomical research mission (e.g., see:  http://hubblesite.org/gallery/wallpaper/pr2007030c/ ).  Even without knowing exactly what real objects are present in these fantastic images from outer space, most people will perceive contours and boundaries, several repetitive components, some symmetries, connections and groupings, and certain repeated shapes, all of which lead to their conscious or subconscious judgment about the presence of beauty in these images.  There is no true up or down in these images from outer space (e.g., view them at different rotations and you will see that these give quite different impressions to the human mind).

Another excellent example of artistic beauty in science is found in 3-D representations of the structure of viruses or protein complexes.  These come from research into their structure using electron microscopy or x-ray diffraction; the reconstructions displayed on a computer monitor are color-coded 3-D representations that the scientist can rotate into various orientations.  A large gallery of such images for the 3-D structure of poliovirus is gathered by Google (see gallery at : https://www.google.com/search?q=3D+structure+of+poliovirus&client=opera&hs=01j&tbm=isch&tbo=u&source=univ&sa=X&ei=dJ5XVYD8Lcu4sAW2koGYBg&ved=0CCsQ7Ak&biw=800&bih=502#imgrc=MFsAz8D1Bzj2WM%253A%3BFiyXCzSZPuuKVM%3Bhttp%253A%252F%252Fvirology.wisc.edu%252Fvirusworld%252Fimgency%252Fp1mPOLIO12.jpeg%3Bhttp%253A%252F%252Fictvdb.bio-mirror.cn%252FICTVdB%252F00.052.0.01.001.htm%3B641%3B487 ).  All these images are scientifically meaningful representations of Nature’s sculpting, but also are esthetically very pretty.  Do you see beauty in any of them?  Note that it is not necessary to understand anything at all about science in order to perceive beauty in many displays at this gallery!

Concluding remarks. 

Science and art have a number of common aspects, including beauty, simplicity vs. complexity, mood, and tension.  On the one hand, an artist creates a canvas or sculpts a figure; on the other hand, a research scientist collects experimental data and derives conclusions from their analysis.  Both artists and scientists feature creativity, mental vision, hard work, experience, and personal talent.  The outputs from both art and science can be pretty, stimulating, and meaningful, or, can be ugly, boring, and meaningless; each individual viewer must make this judgment.

Some scientists can be almost as creative as are artists.  Some artists are as concerned about very small details as much as are scientists.  Both workers produce outputs that stimulate the senses of onlookers.  Both scientists and artists are essential for human society, and both types of authors should be more widely appreciated by everyone for their creative talents and expressive output.

 

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU 

                                                         UNDER THE WEBSITE TITLE

 

 

WHAT HAPPENS WHEN SCIENTISTS DISAGREE? PART V: LESSONS TO BE LEARNED ABOUT ARGUMENTS BETWEEN SCIENTISTS.

 

Controversies Involving Science Affect Everyone! (http://dr-monsrs.net)

Controversies Involving Science Affect Everyone!    (http://dr-monsrs.net)

 

Scientists love to question each other and argue about science all the time!  Following the previous examinations of professional scientists arguing with other scientists (see: Part I:“Background to controversies involving scientists” , Part II: “Why is there such a long controversy about global warming and climate change?” , Part III: “Is glyphosate poisoning us all?” , and Part IV: “A closer look at a scientist whose research causes immense controversy!” ), the final essay in this series will briefly summarize my views about what lessons can be learned from this common activity.

What results come from controversies between research scientists? 

The result of controversies between scientists basically is either a decision about which position triumphs, or a continuation of the unresolved dispute.  Some loud controversies do not yield any settlement for many decades and sometimes never end (e.g., Darwin’s theory about evolution was published over 100 years ago, but still remains controversial).  Disputes between scientists often have inputs from outside science (e.g., governments, religions, other cultures, dedicated institutions, businesses, associations, etc.); in such cases, arguments that originally were about science often shift into debates about official national or local policies, public health regulations, cultural and religious restrictions, predicted expansions of business profits, policy alliances, international interests and conflicts, etc.  These non-science factors make such disputes much more complex, and easily can prevent any agreements about the science aspects from being reached.

Where a controversy can be kept at the level of science and research, further experimental investigations usually will permit some agreement or a consensus to be reached.  In principle, if good experimental data are available, then any controversy between scientists should be settled readily; failure to arrive at a decision for a pure dispute about science can simply indicate that the needed experimental data are not yet available.

What can we learn about disputes between scientists? 

In my personal opinion, all the following generalizations about controversies between scientists are valid and worthy of recognition.

(1)      Arguments about science occur between scientists all the time, but infrequently reach awareness of the public.

(2)      Issues in disputes that strictly involve science often are settled when further or better experimental data are acquired.

(3)      Disputes between scientists are normal and good for science; the progress of scientific research always depends upon asking questions about everything.

(4)      Many controversies between scientists about research are settled, particularly when further experiments are conducted; however, some other controversies never end.

(5)      External factors often enter controversies involving science; this always makes the issues become more complex, since non-science factors inject self-interest, ignorance, and money into the dispute.

(6)      Scientists in complex controversies often are being used; giving expert testimony about science commonly is intended to gain support for some non-science position.

(7)      When scientists work for a company or a governmental agency, they must only support the views of their employer and so are not really free to objectively seek the truth; thus, expert testimony by doctoral scientists can have aims quite outside science.

(8)      In theory, it would be better to initially let expert scientists argue and decide about the science, and only then let outside interests start disputing what should be done (e.g., by authorities, government, industries, lawyers, officials).

(9)      Controversies between scientists can be ended outside science (i.e., by external authority, laws, or institutions); although an official decree can stop a dispute, the issues for science might not be settled.

(10)    It takes personal courage and strong determination for a professional research scientist to maintain their position when confronted and opposed by traditional beliefs, esteemed authorities, government figures, or large crowds of opponents; those individuals who do continue to argue against such opposition always should be highly respected for their personal integrity and dedication to science.

Types of disputes involving science and scientists.  

Based upon the above generalizations, we can identify and characterize several fundamental  types of controversies involving science and scientists.

(1)      Small disputes (e.g., 2 scientists do not agree about the best interpretation of some research data) vs. large disputes (e.g., many scientists and many in the public disagree about what should be done about humans intentionally altering the weather).

(2)       Disputes within science (e.g., scientists in a discipline of science disagree about whether some new technology is truly a part of their research focus) vs. disputes with outsiders (e.g., scientists working in a laboratory facility disagree with local officials about whether their research activities pose any hazard to local residents).

(3)       Simple disputes (e.g., some scientists disagree with others about whether the use of satellite data to measure surface temperatures of Earth is truly accurate) vs. complex disputes (e.g., debates by scientists, governments, and industries about global warming and climate change; see Part II:  “Why is there such a long controversy about global warming and climate change?” ).

Concluding remarks. 

Controversies between scientists are a prominent feature of science and research.  These disputes are wonderful since they halp ensure that scientists are succeeding in seeking and actually finding the truth.  When interests outside science enter disputes between scientists, the arguments become much more complex and more difficult to settle.  The input of scientists into large and complex disputes is most meaningful when made for  issues involving science and research, versus those issues involving the entire public (including scientists as citizens).

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU 

                                                         UNDER THE WEBSITE TITLE

 

WHAT HAPPENS WHEN SCIENTISTS DISAGREE? PART IV: A CLOSER LOOK AT A SCIENTIST WHOSE RESEARCH CAUSES IMMENSE CONTROVERSY!

 

Controversies Involving Science Affect Everyone! (http://dr-monsrs.net)

Controversies Involving Science Affect Everyone!   (http://dr-monsrs.net)

 

When scientists dispute something, attention generally is given to their research data and arguments, but not to the individual people.  As a followup to the materials about disputes between scientists presented in Part IPart II, and Part III, this article examines an individual scientist who is courageously active in disagreeing with some other scientists about several public health issues.  Prof. Stephanie Seneff currently is best known for her proposed identification of a direct cause for the childhood malady, autism.  She vividly exemplifies how unusual new thoughts by a scientist and new approaches to scientific research can produce unexpected advances for science and society.  Following some introductory material, I will let Dr. Seneff speak for herself via some video recordings.

Who is Prof. Stephanie Seneff, and what does she investigate? 

Dr. Seneff is a very active product of the Massachusetts Institute of Technology, where she is a Senior Research Scientist at the Computer Science and Artificial Intelligence Laboratory ( http://people.csail.mit.edu/seneff/ ).  Her collegiate degree in Biophysics was followed by a Ph.D. in Electrical Engineering and Computer Science (1985).  For her earlier investigations, she used computation to model human audition and to develop understanding about language in conversations between humans and computers.  More recently, Dr. Seneff has sought to identify correlations between human disease states, known biochemical and physiological pathways, and alterations produced by pathophysiology in diseases; this approach necessitates surveying extensive bodies of knowledge, but can lead to recognition of hidden interactions causing the known signs and symptoms of a disease.  She has fruitfully applied this research approach to heart disease, brain and nervous sytem pathology, and developmental disorders; her findings and proposals are new, provocative, and often run counter to commonly held and widely supported beliefs in medical science (e.g., she has suggested that statin drugs actually hurt heart disease patients, and that reduced cholesterol levels are bad).

Prof. Seneff is a very controversial scientist.  She is curious, open minded, fascinated by details, and driven to find answers to research questions.  Current investigations center on her controversial conclusion that autism and certain other diseases are caused by the weed killer, glyphosate, from the popular agricultural herbicide, Roundup®.  Dr. Seneff’s conclusions and proposals immediately resulted in her being criticized by large commercial concerns; not only were her research results and conclusions questioned, which is perfectly good, but there also were very personal attacks.  She has never hesitated to vigorously push ahead with health-related research, in an effort to use her new scientific knowledge and insight to invite changes in current medical practices.

To get to know Dr. Seneff and her work, I recommend the selected video presentations listed below (1-5).  These videos illustrate her background, controversial proposals, and commitment to science; they also give a glimpse into why curiosity and independent thinking are so highly important for research scientists.  Many other videos also are available on the internet, including some disagreeing with Dr. Seneff’s proposals.

Concluding remarks. 

Prof. Stephanie Seneff is controversial because she is a very good scientific researcher!  If and when her proposal about what causes autism becomes proven and accepted, an explosion of remedial measures then will be taken immediately in order to prevent her startling prediction that by 2025 half of new births in the USA will have autism.  Even if she is mistaken, which I do not think will be the case, her controversial proposals serve to draw needed attention by researchers and government officials to critical health issues in the modern world.

 

(1)  Inner Eye, 2014.  You must be nuts! – Dr. Stephanie Seneff interview – Part 1.  Available on the internet at:  http://www.youtube.com/watch?v=3x9zqTqSPFo .

(2)  Biofilm, 2014.  How herbicides are killing us: Dr. Seneff, Part 1.  Available on the internet at:  http://www.youtube.com/watch?v=_3HyfoNa2Sw .

(3)  Next News Network, 2015.  MIT doctor links glyphosate to autism spike – Dr. Stephanie Seneff.  Available on the internet at:  https://www.youtube.com/watch?v=6zOlGf_MWsg .

(4)  The Institute for Responsible Technology, 2015.  Gluten and GMOs, Jeffrey Smith interviews Dr. Stephanie Seneff.  Available on the internet at: http://www.youtube.com/watch?v=KVo51yLnohY .

(5)  Mercola, 2012.  Dr. Mercola interviews Dr. Stephanie Seneff on statins.  Available on the internet at:  http://www.youtube.com/watch?v=_hbNSHPco0g .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU 

                                                          UNDER THE WEBSITE TITLE

 

WHAT HAPPENS WHEN SCIENTISTS DISAGREE? PART III: IS GLYPHOSATE POISONING US ALL?

 

Controversies Involving Science Affect Everyone! (http://dr-monsrs.net)

Controversies Involving Science Affect Everyone!   (http://dr-monsrs.net)

The small organic chemical, glyphosate, kills many broadleaf plants and is the chief ingredient of the very popular herbicide, Roundup®, produced by the Monsanto Corporation.  Glyphosate is used in agriculture to kill weeds and also for pre-harvesting applications to wheat.  Its usage on farms rose dramatically when Monsanto also developed Roundup® Ready crop seeds (see:  http://www.monsanto.com/products/pages/monsanto-agricultural-seeds.aspx ); these mutants of corn, soybeans, and other crops have resistance to higher levels of glyphosate that kill their nonresistant counterparts  Today, (1) Roundup® and strains of crops more tolerant to glyphosate are in very widespread use on farms all over the world, (2) normal pollination by airborne dispersal easily results in crossbreeding of resistant and non-resistant strains, (3) widespread usage of Roundup® in modern agriculture means that resistant strains automatically spread and take over any neighboring fields originally planted with only non-resistant strains, and, (4) the amount of glyphosate-containing agricultural products consumed by humans is substantial and is increasing.

The first article in this series provided a general background for controversies involving scientists (see: Part I ).  The second article discussed the ongoing controversy about global warming and climate change (see: Part II ).  This essay examines the ongoing controversy about whether glyphosate is benign or harmful to humans.

How does glyphosate get inside humans?  

Glyphosate enters human bodies via several different routes: (1) ingestion of agricultural crop products containing glyphosate due to treatment with Roundup®, (2) drinking of water having small or large glyphosate contents, (3) breathing of atmospheric glyphosate microparticulates due to its widespread dispersal during agricultural applications, (4) ingestion of farm aninals which ate corn or other plant material treated with Roundup®, and, (5) ingestion of bovine milk, chicken eggs, and other animal products.

Basically, everyone living on this planet now has glyphosate within their body.  Monsanto originally performed short-term research studies showing that glyphosate has very low toxic effects upon humans.  However, long-term research data for chronic exposures are missing.  Very high levels of glyphosate inside human food sources mostly are being ignored by regulatory agencies, many farmers, and most scientists.  The primary question for health researchers and clinical doctors is, “Does glyphosate have any toxic and pathological effects in humans?”.  This is a very straightforward research question and should be readily answered by scientific investigations.

What does scientific research on glyphosate find about its safety? 

An extensive examination of published biochemical investigations recently showed that glyphosate could have quite a few undesired consequences upon humans and mammals, aquatic organisms, and bacteria [1].  The changes in metabolism caused by glyphosate affect cytochrome P450, enzymes, sulfate balance, amino-acid dynamics, and the human gut microbiome; these changes are alleged to be involved in such pathological states as Alzheimer’s disease, autism, breast cancer, developmental anomalies, irritable bowel syndrome, obesity, and vitamin-D deficiency [1].  People already have been exposed to Roundup®  for many years, but its causation of disease states remains uncertain; plausable associations alone are not sufficient to establish causality.  Worrisome new research findings showing involvement of glyphosate in human pathology are disputed by Monsanto and some other scientists.

A good published, but retracted, experimental study by Séralini et al [2] investigated chronic toxicity in rats exposed to glyphosate in various forms and dosages.  This professional research report aroused an amazing degree of controversy [3,4], resulting in empty disputes, personal attacks, and improper activities by the publishing journal [4].  Regretably, that dispute includes documented examples where scientists associated with Monsanto have restricted publication of research manuscripts showing that glyphosate can be quite harmful to the health of humans and animals; this has caused accusations that some science journals are not honest, use double standards for review of manuscripts, and have become subordinate to commerce [4].

The United States Food and Drug Administration.

If Roundup® might be dangerous, why is it not being researched and regulated more?  The United States Food and Drug Administration (FDA) is charged with monitoring and regulating public safety of all the many chemicals, foods, and materials used in our country ( http://www.fda.gov/Food/ ).  Toxicologists working at the FDA investigated glyphosate toxicity and established that anything below a certain level is not harmful to humans.  Toxicologists in other countries conducted similar evaluations to establish a safe level, but some of their approved values are smaller than that validated by the FDA.  Certain countries even ban use of glyphosate and genetically-modified crops resistant to glyphosate.  Nevertheless, millions of pounds of glyphosate now are used annually on farms around the globe [1].

Almost all Americans are totally reliant on the FDA to keep them safe from poisons and dangerous foods.  What does the FDA say about the glyphosate controversy?  The answer is “not much”, since their scientists apparently are not conducting all the needed measurements.  Why have these not been conducted?   Or, why were the needed assays indeed conducted, but the results are not released?  Is Monsanto influencing risk assessment by the FDA?

Could human diseases be caused by glyphosate? 

Several different disease states now are postulated to be caused directly or indirectly by glyphosate [e.g., 1].  Where the incidence of these pathological states has risen in time, data for the amount and distribution of glyphosate in people runs a closely parallel course.  The health implications of the glyphosate controversy are very extensive; it has even been proposed that the problem associated with gluten in bread actually is a problem with its glyphosate content [1].  Clearly, much more research is badly needed; despite the increasing association of glyphosate with pathology, definitive causality of human diseases by this chemical has not yet been proven.

Many glyphosate-containing weed-killers now are being marketed to farmers.  These contain different additives (e.g., adjuvants, detergents, surfactants) that enhance the toxic effects of glyphosate upon plants.   This enhancement is due to augmented absorption by agricultural plants, thereby giving humans eating them an increased dosage [5].  The amount of glyphosate in foods also is increased by the fact that many farmers now are adding additional Roundup® to their crops to deal with the new presence of glyphosate-resistant weeds.  Global governmental regulations of approved glyphosate levels have conveniently been raised by large amounts to handle this new situation [1].  Thus, despite the increasing evidence suggesting that glyphosate could have some bad effects upon human health, people eat more and more Roundup® each and every year [5].

Concluding discussion. 

The controversy about the alleged human toxicity of glyphosate and Roundup® already is more than a decade old.  Despite the suggested pathology, the amount of glyphosate eaten by humnans and accumulating inside them constantly increases [5].  It is alarming that the potential public health disaster of chronic glyphosate toxicity is not being researched much more vigorously by scientists.

This ongoing controversy not only has scientists arguing with other scientists, but also has scientists disputing with a very large well-established commercial company.  The scientific issues regarding glyphosate toxicity are rather straightforward, but the needed research studies are not being conducted; it is suspected that these investigations are being hindered by Monsanto’s total focus on business profits.

While this controversy drags on, what should people do?  Foods now are grown by some farmers without using exposure to Roundup® and are becoming more readily available in grocery stores.  As one researcher involved with the glyphosate controversy has advised, “Go organic!” [6].

 

[1]  Samsel, A., and Seneff, S., 2013.  Review.  Glyphosate’s suppression of cytochrome P450 enzymes and amino acid biosynthesis by the gut microbiome: Pathways to modern diseases.  Entropy  15:1416-1463.

[2]  Séralini, G. E., Clair, E., Mesnage, R., Gress, S., Defarge, N., Melatesta, M., Hennequin, D., and de Vendômois, J. S., 2012.  Retracted.  Long term toxicity if a Roundup herbicide and a Roundup-tolerant genetically modified maize.  Food and Chemical Toxicology  50:4221-4231.

[3]  Séralini, G. E., Mesnage, R., Defarge, N., Gress, S., Hennequin, D., Clair, E., Malatesta, M., and de Vendômois, J. S., 2013.  Answers to critics: why there is a long term toxicity due to NK603 Roundup-tolerant genetically modified maize and to a Roundup herbicide.  Food and Chemical Toxicology  53:476-483.

[4]  Robinson, C., and Latham, J., 2013.  The Goodman affair: Monsanto targets the heart of science.  Independent Science News, May 20, 2013.  Available on the internet at: http://www.independentsciencenews.org/science-medical/the-goodman-affair-monsanto-targets-the-heart-of-science/ ).

[5]  Bohn, T., and Cuhra, M. 2014.  How “extreme levels” of Roundup in food became the industry norm.  Independent Science News, March 24, 2014.  Available on the internet at:  http://www.independentsciencenews.org/news/how-extreme-levels-of-roundup-in-food-became-the-industry-norm/ .

[6]  Seneff, S., 2014.  Slide #48 from presentation on glyphosate hosted by the MIT and Wellesley Alumni Associations, April 28, 2014.  Available on the internet at: http://people.csail.mit.edu/seneff/California_glyphosate.pdf .

 

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU 

                                                           UNDER THE WEBSITE TITLE

 

 

WHAT HAPPENS WHEN SCIENTISTS DISAGREE? PART II: WHY IS THERE SUCH A LONG CONTROVERSY ABOUT GLOBAL WARMING AND CLIMATE CHANGE?

 

Controversies Involving Science Affect Everyone! (http://dr-monsrs.net)

Controversies Involving Science Affect Everyone! (http://dr-monsrs.net)

The much disputed controversy about global warming features scientists, politicians, business leaders, and ordinary people arguing for or against it.  Questions about global warming have shifted into a general debate about climate change.  Clearly, this ongoing dispute is not yet even close to being resolved.  This essay examines how and why this prolonged controversy is so very difficult to resolve despite the input of many professional scientists; the previous article in this series provided a general background for controversies involving scientists (see Part I at:  http://dr-monsrs.net/2015/04/18/what-happens-when-scientists-disagree-part-i-background-to-controversies-involving-scientists/).

What is global warming?

In a nutshell, global warming is a worldwide increase in ambient temperature.  This environmental parameter has been measured directly for recent periods or estimated indirectly from analysis of antarctic ice cores for hundreds and thousands of previous years.  Global temperature has increased since the industrial revolution began (ca. 1870) and has risen more rapidly since 1970.  It is known that elevating the amount of certain gases in the atmosphere (e.g., water, carbon dioxide, and methane) causes increased retention of heat; this is known as the “greenhouse effect”.  It is postulated that the global temperature is rising largely due to increased levels of carbon dioxide coming from burning of the fossil fuels, coal and oil.  Since further warming will cause melting of glaciers, increased ocean heights, changes in weather patterns, and other disruptive effects, the use of coal and oil must be decreased globally to stop any further rises in temperture.  Climate change includes global warming, as well as global cooling and other large environmental changes in the modern world.

For those wanting more information about global warming and climate change there are very many materials available on the internet.  I recommend several informative presentations for general readers: (1) “Causes of climate change” at:http://www.epa.gov/climatechange/science/causes.html ), (2) “How are humans responsible for  global warming?” at:  http://www.edf.org/climate/human-activity-is-causing-global-warming ), and (3) “5 scientific reasons that global warming isn’t happening” at: http://townhall.com/columnists/johnhawkins/2014/02/18/5-scientific-reasons-that-global-warming-isnt-happening-n1796423/page/full ).  An especially good gathering of arguments both for and against the official standard concept of global warming is available ( “Is human activity primarily responsible for global climate change?” at:  http://climatechange.procon.org ), and will help readers to come to their own judgment.

The standard very official concept about global warming. 

The standardized viewpoint about global warming accepts that the temperature worldwide is indeed rising.  The primary cause of this temperature increase is human activities; people cause global warming by burning coal and oil to produce increased amounts of greenhouse gases, and also by paving and urbanization, generating carbon black microparticulates, deforestation, etc.  Much emphasis in the standard concept of global warming is given to the production increased carbon dioxide.  If no intervention is taken, this concept predicts more  warming that will cause very alarming changes in ocean levels, weather patterns, and life as we know it.

What are the main issues in the global warming and climate change controversy? 

Global warming and climate change involve several different assumptions, all of which are being questioned.  (1) Is there really an increase in global temperature?  (2) What are the main causes of this rise in global temperature?  (3) Is there actually a recent large increase in atmospheric carbon dioxide?  (4) What causes the increased carbon dioxide?   For all these queries, the chief question that must be asked is, “What is the evidence?”

Starting at the very beginning, one must first ask what is the evidence that there really is any global warming? (i.e., are measured global temperatures actually increased in recent times.  A positive answer leads to several other related questions.  (1) How much warmer is this average figure?  (2) How was surface temperature of the entire planet measured or estimated?  (3)  Are all countries and regions warmer, or are some simultaneously cooler?  (4) Have similar variations in global temperature ever been observed previously?  These questions involve science, and should be answered and debated by expert scientists (e.g., climatologists, meteorologists, oceanographers, atmospheric physicists, etc.).

Anyone seeking answers to questions about global warming must inquire what is the primary cause of such climate change?  A big controversy involves the hypothesis that human activities cause this environmental change.  There are several other possible causes, including natural weather cycles, large shifts in solar energy discharges, changes in Earth’s orientation and distance from the Sun, large increases in the global number of humans and animals producing atmospheric carbon dioxide through their normal respiration, etc.  Good science demands that alternative explanations must be examined.

The controversy about climate change engages all the foregoing plus corresponding questions about global cooling.  From our knowledge about forming and melting glaciers in the ice ages, we know that there have been very prominent changes in temperature during the distant past.  The causes of these well-known changes still are not clear.  Today, some portions of the globe have very increased temperatures and severe droughts.  Shorter term increases or decreases in temperatures occur in response to natural changes in the environment, including activity of the Sun, humidity levels, patterns of ocean currents, rain cycles, seasonal effects, etc.

What have scientists said and done in this ongoing controversy? 

In additional to gathering and analyzing data, scientists debate what conclusions are valid and ask lots of questions.  In 1988, the United Nations convened a panel of expert climatologists to assess global warming and advise about what new policies are needed.  That group, the United Nations International Panel on Climate Change (UNIPCC) constructed the official standard concept of global warming described above.  An independent non-governmental panel of expert climatologists has been established more recently; this group, the Nongovernmental International Panel on Climate Change (NIPCC), has issued reports with conclusions about global warming that are very different from those of the UNIPCC.  Many other scientists have been involved from the beginning, and continue to dispute almost everything.  A survey of the literature by climate scientists (1991-2011) revealed that around 97% endorsed the consensus position that humans cause global warming (see J. Cook et al. 2013 Environmental Research Letters 8:024024 at:http://iopscience.iop.org/1748-9326/8/2/024024 ).  However, that figure directly contradicts the assertion that 31,000 other scientists, including many not working in climatology, do not see any conclusive evidence that the standard concept is valid ( http://ossfoundation.us/projects/environment/global-warming/myths/31000-scientists-say-no-convincing-evidence ).  Clearly, in 2015 many scientists disagree about the official standard concept of global warming and climate change!

What is the present status of this ongoing dispute? 

Almost everything in the controversial official version of global warming now is being questioned and debated vigorously.  Expert scientists are arguing against other expert scientists.  Many science organizations accept and support the official concept about global warming as being due to human activities producing increased levels of carbon dioxide.  All government agencies monolithically endorse the official viewpoint and promote activating strong intervention by the government.  Groups of environmentalists also support the official viewpoint.

On the other hand, some former supporters of the standard position now strongly deny the validity of global warming.  These dissenters even include some members of the original expert panel (UNIPCC) that constructed the standard concept for global warming!  Many individual scientists and science groups now are contrasting predictions made from the official viewpoint with recent measurements showing cooler temperatures and enlarging sizes of polar icecaps; thus, the recent data support global cooling, rather than global warming!  Predictions from the official coincept do not match the reality.

Debates about this controversy involve politics, finances, emotions, and egos, as well as science.  Questions and dissenting views by scientists are increasing despite documented efforts to suppress dissent against the standard concept  [e.g., 1-5].  It is most disconcerting that this and other unethical behavior has been uncovered for some of the scientists strongly involved in this controversy [e.g., 1-5]; that distracts attention from the actual scientific issues being debated, and reduces trust by the public in all scientists.

Why is global warming and climate change so hard to establish or deny conclusively? 

Several distinct reasons can be identified why expert scientists have not been able to resolve this ongoing controversy.  First, the standard official concept of global warming increasingly seems to be invalid.  It’s predictions about rising temperatures, melting of polar icecaps, and alarming changes in weather patterns do not match reality.  It cannot explain large environmental changes that currently are observed.  Solid evidence for a recent rise in temperatures is questionable or missing.  One commentator recently has even dared to ask, “Is global warming a hoax?” [5].  Second, the complexity of this controversy is enormous.  In addition to science, it involves finances, politics, industries, and governments.  Arguments involve much more than scientific facts and figures; egos, emotions, careers, repression of questions, and, predictions of alarming disasters are prominent.  Third, the use of “global” in the questions being addressed is questionable because there are very many quite different regions and different human activities involved; many so-called global datapoints actually are averages or extrapolations.  How exactly can the temperature in Nepal be meaningfully averaged with that of Greenland, New York City, Tunis, and Tahiti?  Similarly, how can the different human activities within these 5 parts of our planet be averaged in a meaningful way?  Fourth, this long dispute has been made more difficult for science to resolve by the uncovering of data manipulations and repressions of dissent [e.g., 1-5].

Concluding discussion. 

From the materials given above and all the pro/con data now available, I must conclude that this controversy is a quagmire, and that it is unlikely to be resolved.  Both sides in this long dispute have developed very hard positions, and both are supported by some scientists, some research findings, and some group organizations; those conditions can only lead to a stalemate.  Additionally, politics and commercial interests now have strong involvement in this dispute, and often overwhelm the input of science.  Scientific research can produce new facts, figures, concepts, and ideas, but it cannot readily deal with a quagmire that is a jumble of emotionally and financially charged positions.

The fact that new laws and regulations already are being proposed in advance of any consensus agreement by scientists and the public suggests that some unannounced agenda is at work here.  The primary purpose of trying to reduce carbon emissions and establish a global carbon tax appears to be installing greater regulation of industries, economies, and nations; reduction of carbon dioxide levels is only a phoney excuse for establishing increased governmental controls over everything and everyone.

 

[1]  Jasper, W. F., 2012.  “Climate science” in shambles: Real scientists battle UN agenda.  Available on the internet at: http://www.thenewamerican.com/tech/environment/item/11998-%E2%80%9Cclimate-science%E2%80%9D-in-shambles-real-scientists-battle-un-agenda .

[2]  Newman, A., 2013.  Top scientists slam and ridicule UN IPCC report.  Available on the internet at:  http://www.thenewamerican.com/tech/environment/item/16643-top-scientists-slam-and-ridicule-un-ipcc-climate-report .

[3]  Newman, A., 2014.  U.S. agencies accused of fudging data to show global warming.  Available on the internet at: http://www.thenewamerican.com/tech/environment/item/17500-u-s-agencies-accused-of-fudging-data-to-show-global-warming ).

[4]  Booker, C., the Telegraph, 2015.  The fiddling with temperature data is the biggest science scandal ever.  Available on the internet at: http://www.telegraph.co.uk/news/earth/environment/globalwarming/11395516/The-fiddling-with-temperature-data-is-the-biggest-science-scandal-ever.html .

[5]  Hiserodt, E. & Terrell, R., 2015.  Is global warming a hoax?  Available on the internet at: http://www.thenewamerican.com/tech/environment/item/19840-is-global-warming-a-hoax .

 

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU 

                                                           UNDER THE WEBSITE TITLE

 

 

WHAT HAPPENS WHEN SCIENTISTS DISAGREE? PART I: BACKGROUND TO CONTROVERSIES INVOLVING SCIENTISTS.

 

Controversies Involving Science Affect Everyone! (http://dr-monsrs.net)

Controversies Involving Science Affect Everyone!   (http://dr-monsrs.net)

 

Controversy is good generally because it encourages discussion, questioning, debates, and testing of ideas.  For science, controversy is completely essential as part of the search to find what is true.  Both in the classical times and in modern years, some controversies between scientists take a very long time to be resolved.  Disputes involving science today mostly feature scientists disagreeing with: (1) other scientists, (2) local administrators, (3) government officials and granting agencies, (4) regulatory bodies, and, (5) commercial companies.  Disputes in conditions 2-5 often follow different rules than in class 1, and commonly aim for other goals than just finding the truth.

Controversies involving scientists are important for everyone because they often are the basis for making new laws and regulations.  This series of articles examines different types of controversies involving professional scientists.  Part I provides essential backround for the entire series.  Later, we will take a look at certain specific disputes and some courageous scientists.

Controversies between individual scientists. 

After research results are collected and analyzed, doctoral scientists in universities or industries typically interpret their data and then reach conclusions about what these show and mean.  Forming interpretations and reaching conclusions often lead to disputes between scientists; that is completely normal and good.  For controversies between scientists, the most essential question in all of science is at the forefront: “What is the evdence?”.  When forced to discuss the opposing arguments, each side claims to have more expertise, and both point to features supporting their position or weakening the opponent’s position.  In most cases, the opposing scientists will then conduct further research studies to try to find more definitive support for their positions. Soon, other researchers can begin participating in that debate about the truth.

This kind of controversy can be settled when the total evidence for one side becomes overwhelming, the number of other scientists agreeing with one position rises to a level sufficient to silence the opposition, or, the stalemated controversy withers and disappears after becoming seen to have little practical importance for science or society.  Although this type of common dispute can become nasty and personal, most level-headed professional research scientists will abide by whatever conclusions are supported by reliable experimental results.

Controversies between scientists and local officials. 

Controversies between scientists and local officials are quite different from those involving only other scientists.  When scientists are confronted by local officials claiming that some rule or restriction is being violated, they typically try to make some changes aimed at either satisfying their accuser, or at least bringing their violation beneath the level of immediate concern.  Some examples of typical responses by scientists are: (1) “I’m so very sorry … I forgot about that” (e.g., turn in some periodic inventory of a toxic chemical), (2) “I asked my technician to do that, but she was out with a bad cold last week” (e.g., bring some regulated waste from the lab over to a shipping dock), or, (3) “I’m going to a meeting next week, so I’ll have that ready for you in about 2-3 weeks” (e.g., clean up some mess in the lab).  All such responses by a scientist cannot win against official authorities, but they do gain more time for the busy scientist to take corrective action.

Controversies between scientists and government. 

Just like ordinary people, scientists can disagree with some policies, priorities, or pronouncements of government officials.  The yearly crop of new governmental regulations for conducting research experiments often is disputed and resented by many scientists.  Any controversy with the government is inherently risky for scientists, because they can come to influence the hoped for continuation of their research grant support.  Particularly galling for scientists are any type of negative judgments by the agencies handling competitions for research grants.  Scientists receiving only partial funding for a successful grant application usually become depressed and angry that they now cannot conduct the full range of their planned research experiments.  However, any scientist serving on a panel reviewing research grant applications soon comes to realize that evaluations of proposals and judgments of funding priority are decisions which are inherently complex, difficult, and filled with divergent viewpoints.  Since authority always can override opposition, there is little point in trying to win by open dispute; it is nuch better to win by channeling efforts into composing a better stronger proposal.

Controversies involving scientists and commercial businesses. 

When disputes about some commercial product arise (e.g., activities, capabilities, performance, precision, sturdiness, etc.), the manufacturer often releases facts and figures obtained from research by their own in-house scientists and engineers.  The opposing side also will have some scientists providing data that support its position.  Both sides here will claim to have more authority and better data.  This type of controversy is not part of the usual disputes between research scientists as described earlier, becuase investigators working for a commercial company almost always are not just seeking the truth, but have a bias in favor of their employer; they simply cannot stop trying to support their employer’s position no matter what research results they find and which data are brought forth by their opponents.  This type of lengthy controversy between scientists and industry easily can become stalemated.

For a good example of this kind of controversy, we can think back several decades to times when smoking of tobacco was very popular and manufacturers of tobacco products brought forth research results that seemed to deny the validity of new scientific data showing that smoking of tobacco causes cancer and other major health problems [1-3].  This dispute lasted many years before more and more research results showing carcinogenisis accumulated; finally, laws were passed and information programs started in order to decrease smoking.  Today, smoking still is not completely banned, but many fewer people now smoke; this decrease has resulted in considerably reducing the incidence of smoking-induced cancers and other pathologies [1-3].  This controversy exemplifies that science and research can take much time to have social impacts.

Controversies involving scientists and society. 

We must examine 2 different kinds of controversies between science and society.  The first is when a non-scientist in the public starts sincerely questioning why in the world would any scientist undertake some very esoteric research study, and why is it being funded by money from taxpayers?  Even when the value for science is fully explained, there remains little chance that the questioners will change their mind; this type of dispute strongly involves psychology, rather than just science and reason.

The second is where members of the public, acting either from reason or emotions, hold some viewpoint very dearly.  They regard scientists bringing forth research results which disprove their opinion as being outright enemies or demons rather than objective seekers of the truth.  This kind of dispute involves a quite different set of rules (i.e., the number of scientists on each side, rather than their research results, can determine victory).  Although both sides theoretically could come to agreement, this rarely happens no matter how much new evidence is gathered by each side; the easiest solution for such controversies is for some authority or politician to take action.

A very good recent example of this second type of dispute between scientists and society is the concept of global warming [e.g., 4-7].  Quite a few scientists have entered this ongoing debate and many have brought forth research results denying that global temperatures even have increased, let alone that such was caused by human activities.  Both sides of the global warming controversy are strongly committed and neither will give up; this lengthy dispute now is continuing on its merry way as a shifted question about climate change. Teachers should take special note that both sides of this controversy are being supported by doctoral scientists and their research results [7].  This ongoing dispute has much public importance because various new federal regulations are being sought even though no conclusions have been agreed upon by scientists, politicians, or the public.

Concluding remarks. 

Science and scientists are involved in many different types of controversies.  When these are based upon the results of research experiments, the disputes usually are valuable for science.  When these are based upon emotions, politics, or ignorance, these disputes usually are not able to be resolved and often are a waste of scientists’ precious time.

In forthcoming articles we will take a closer look at specific examples of controversies involving science, and at some scientists who are trying to win a dispute.

 

[1]  National Cancer Institute, 2011.  Harms of smoking and health benefits of quitting.  Available on the internet at:  http://www.cancer.gov/cancertopics/causes-prevention/risk/tobacco/cessation-fact-sheet .

[2]  American Cancer Society, 2014.  Tobacco-related cancers fact sheet.  Available on the internet at:  http://www.cancer.org/cancer/cancercauses/tobaccocancer/tobacco-related-cancer-fact-sheet .

[3]  National Heart. Lung, and Blood Institute, National Institutes of Health, 2015.  How does smoking affect the heart and blood vessels?  Available on the internet at: https://www.nhlbi.nih.gov/health/health-topics/topics/smo .

[4]  National Resources Defense Council, 2015.  Global warming.  Available on the internet at:  http://www.nrdc.org/globalwarming/ .

[5]  John Cook, Skeptical Science, 2015.  The 97% consensus on global warming.  Available on the internet at:  https://skepticalscience.com/global-warming-scientific-consensus-basic.htm .

[6]  OSS (Open Source Systems, Science, and Solutions) Foundation, 2015.  31,000 scientists say “no convincing ebidence”.  Available on the internet at: http://www.ossfoundation.us/projects/environment/global-warming/myths/31000-scientists-say-no-convincing-evidence .

[7]  Climate Change Debate Pros and Cons, 2015.  Is human activity primarily responsible for global climate change?  Available on the internet at:  http://climatechange.procon.org .

 

 GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU 

                                                           UNDER THE WEBSITE TITLE

 

ARE SCIENTISTS ACTUALLY WEIRD CREATURES FROM ANOTHER PLANET?

 

Why are research scientists considered to be weird creatures when it isn't so? (http://dr-monsrs.net)

Why are research scientists considered to be weird creatures when it just isn’t so?   (http://dr-monsrs.net)

 

Scientists commonly are pictured as peculiar brainy people wearing a white coat and working in laboratories filled with many strange instruments and bottles of colored liquids.  This Hollywood view of scientists has them working to create evil monstors, terrible new diseases, and unthinkable disasters for humanity and our planet.  While that is acceptable for entertainment, when this false view  expands into the real world it becomes very disconcerting for hard-working real research scientists; you can imagine the difficult problems that arise when a little boy asks his father the doctoral scientist, “What kind of new plague did you create today with your bacterial DNA work, Dad?”.

Doing high quality science with creative research is not easy, and so should be much better appreciated by non-scientists.  I have earlier explained that the average adult today has never ever talked to a real living scientist or visited a research lab; they have very little idea what professional researchers actually do (see “On the Public Disregard for Science and Research” ).  This large gap is filled by the Hollywood movies with science-created monsters and the television portrayals of crazy scientists.  I believe that exposing everyone to some distinctive individuals who are research scientists will help normalize this unfortunate modern delusion.

I recommend the following videos to you!  These will provide you with a taste for what sort of people real research scientists actually are.  You will see that not all Ph.D. scientists wear white lab coats, some have many talents besides working with test-tubes or x-ray synchrotrons, and all have very distinctive personalities.  Their lives are filled with adventures into the unknown, but some good scientists also are quite enthusiastic about aviation, cooking, gardening, surfing, or vacations.

KARY B. MULLIS is an utterly fascinating person with a great sense of humor.  Among his many creative achievements in science are his childhood rocket experiments, his receipt of a Nobel Prize (Chemistry) in 1993, and his fearless disputes about what is true.  His wonderful website ( http://www.karymullis.com ) is filled with loads of material, stories, and photos.  I enthusiastically recommend a video of his talk to a general audience in California ( see “Sons  of Sputnik: Kary Mullis at TEDxOrangeCoast” ).  He always comes across as being very individualistic, curious about almost everything, and completely unafraid of anything!

SUMIO IIJIMA looks at the world through electron microscopes, and specializes in magically seeing what other scientists do not observe.  He is very active with research in the still-expanding field of nanoscience.  His website includes a gallery of candid photographs, including some showing lab parties and his bicycle ( http://nanocarb.meijo-u.ac.jp/jst/english/Gallery/galleryE.html ).  I heartily recommend here the video of his elegant presentation in London (2007) about his celebrated work with carbon nanotubes (see “Nanotubes: The Materials of the 21st Century” ).

BRENDA MILNER is a pioneering neuropsychologist/neuroscientist who investigate memory systems in the brain.  After over 6 decades of research work, she continues with an amazingly advanced age to do research enthusiastically at McGill University in Monreal.  She recently added one of the 2014 Kavli Prizes in Neuroscience to her large collection of major honors.  I recommend both a truly delightful, but overly short (only 59 seconds!), video showing her in action (scroll down the opening page to see “Short Presentation of Brenda Milner” ), and a slightly longer video at another website (see “Brenda Milner Video Biography” ).

There are many other good videos about research scientists available on the web.  Try to find another one featuring a scientist working on some topic or research subject that interests you, and watch it!  From these videos, you will see that scientists are very devoted individuals actively working at research, teaching, and life; in other words, they are not weird creatures from another planet, but are just your fellow people!

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU 

                                                           UNDER THE WEBSITE TITLE

 

ARE SCIENCE LIBRARIES GOING TO VANISH?

 

What did everyone do before computers, television, and libraries? (http://dr-monsrs.net)

What did everyone do before computers, television, and libraries?                           (http://dr-monsrs.net)

 

Libraries are undergoing many large changes due to the rise of digital technology, the ready availability of the internet and of multimedia recordings, and, the changes in modern society.  As the main repositories for information, large libraries have been instrumental for scientific research, other areas of scholarship, and education; they are changing along with the neighborhood libraries in cities and the small libraries in schools.  This essay examines how these changes in science libraries affect research scientists.

Science libraries. 

Science books now are being published both in traditional printed versions and in digital formats.  For science journals, most now are published both in printed form and as digital editions; a number of new professional journals covering scientific research are only digital.  Media play an increasingly important role for science education, research reports, and presentations at science meetings; all of these now are mostly in digital form.  Instead of a book of printed abstracts, scientists attending annual science meetings frequently now receive a portable digitized recording.  Many libraries, including both local public libraries and large scholarly libraries at universities, now contain many digital volumes and digitized materials in their collection.

This extensive shift into digitized formats means that students and scientists now can: (1) access almost everything traditionally found in libraries without a physical visit; (2) interlibrary loans are increasingly unnecessary; (3) searching for information on personal computers, as compared to spending several days or weeks camped out within a library, seems quick, efficient, and comprehensive; and, (4) even course textbooks now are being sold for use on the personal computers of students.  I believe that many of these changes are good for science and society, but some also have unrecognized side effects (e.g., if anything is stated to be “fully known”, then there is no point to studying it further!).

What do research scientists need books and libraries for? 

Common uses of library materials by research scientists include: (1) reading or viewingnew books, new or old issues of science journals, new documents related to science, new or old science textbooks, and, new media, and, (2) searching for answers to certain questions, historic materials, published opinions and pronoucements about science, deposited research data, or, presentations at science meetings.  Although almost all of these retrievals now can be accompished via the internet, some care is needed to ensure that such searches truly are extensive, complete, highly detailed, and include all related topics.

Most scientists and almost all students now rarely or never visit a library!  Scientists doing research in universities, industries, hospitals, and technology institutes find the internet much easier to use from their office or residence.  Internet search engines quickly display numerous websites in response to any search on a browser.  Absolutely everything that a scientist could need soon will be readily available on the internet.  Except for very special science libraries containing collections of rare and ancient materials, science libraries now are underutilized and increasingly seem unnecessary; since maintaining traditional libraries necessitates spending quite a lot of money every year, it is easy to predict that they will be converted into much less costly fully digitized libraries.

Why are internet searches about science often incomplete or superficial? 

Internet search engines operate mechanically, unlike the human mind.  Although searching on the internet is quite rapid, the information retrieved often can be limited in scope, one-sided or biased, and, includes only limited and highly-selected details.  There are accounts that some internet materials have been truncated or express quite tilted views.  If any data, materials, statements, or divergent opinions are not displayed, then the results of an internet search are incomplete; many persons using an internet search engine usually arenot aware of those limitations.  Living scientists are much better able than search engines to interrelate separate items and topics, judge relevancy, create a sequence of connected operations, and, proceed logically into new directions.

To state this in a different way, searching with search engines is not the same as doing research.  In the good old days, searching in a library to find needed materials resembled going on a treasure hunt; different hunters even could find different treasures!  Many youngsters and college students today believe that a classroom assignment to “do research” about something means to use a search engine on the internet.  That mistaken viewpoint undoubtedly reflects the general lack of understanding about what is research and what scientists and other scholars do (see:  “What Do University Scientists really Do in Their Daily Work?” ).  For scientists, the internet is a very useful tool for research, but is best seen as only part of a longer and more complex mental activity.

Looking at the future of books and libraries. 

Things are changing in libraries so quickly that it is now possible to visualize what will happen to them in the near future.  The number of science libraries will decrease dramatically as most materials on science are moved into “The Cloud”.  Library functions then will be taken over by special national or regional websites providing access to very large databases of digitized materials.  These truly gigantic collections will be designated asdigital megalibraries, and are based upon a super-database that combines several other huge databases.

In answer to emotional outcries that old and antique printed books are still good and useful, a worldwide effort will be undertaken to create digitized versions of the entirety of all previously published volumes.  Practical problems with the numerous different languages in our world will be remedied by new software programs that rapidly translate anything published or audio-recorded into whatever language is needed.  When all of these predicted developments happen, scientists and everyone else will have access to everything on their personal computer!

For research scientists, these changes mostly will be good, although the information available might at first seem overwhelming.  New strategies for dealing with this glut of retrieved information will be invented and developed.  This galaxy of total informationalso will stimulate new commercial software that objectively lists new and old publications that are important for any science topic or research question.  Reviewers of manuscripts, grant applications, educational materials, and books then will use related special new software to ensure that authoring scientists have dealt with all the necessary information.  Research reports will then need to provide a special listing of “non-cited references” in order to keep the actual article readable and its length reasonable.

Concluding remarks. 

Are science libraries going to vanish?  No, but they will be completely transformed into digitized operations.  The new digital libraries will continue to be vital for science and research.

Having spent many years looking at dusty old volumes in university libraries and then finding that the one for my particular interest was missing, I believe that the forthcoming availability of absolutely everything in digital form will be welcomed by all scientists and other scholars.  Nevertheless, at a strictly emotional level, a discolored old book with a wonderful smell to it can never be equated to its digitized counterpart!

 

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU 

                                                           UNDER THE WEBSITE TITLE

SHOULD RESEARCH SCIENTISTS BE UNIONIZED?

 

Should Research Scientists be Unionized? (http://dr-monsrs.net)

Should Research Scientists be Unionized?    (http://dr-monsrs.net)

Unions traditionally are for workers in factories, offices, or the trades (i.e., trade unions), but more recently also are active in many other situations where employees feel they need protection from their employer.  Most scientists working in universities or industrial research and development (R&D) centers presently are not unionized.  However, some university science teachers, workers in science-related jobs, and hospital staff do become unionized.  In recent times, many employers have set up grievance mechanisms in order to try to preclude the need to establish unions as a protection against perceieved or actual workplace abuses.  This essay takes a closer look at the present claims for research scientists to become unionized.

Background. 

Many scientists working as professional researchers in universities now have major job problems with (1) time management, (2) obtaining sufficient money from governmental grants to support their research, and, (3) demands for dishonesty (see: “Introduction to Cheating and Corruption in Science” ).  These very general problems now cause much job dissatisfaction for university scientists (see:  “Why are University Scientists Increasingly Upset with their Job?  Part I” ).  All 3 large practical problems are due to misguided policies and practices with:  (1) modern universities, (2) the current research grant system, and (3) the commercialization of science (see: “What is the Very Biggest Problem for Science Today?” ).

For faculty scientists at universities and medical schools, the research time problem bothers everyone greatly, but probably is not yet severe enough to support union-based strikes or job actions.  Different levels of the research money problem are faced by everyone doing laboratory research within universities; although dissatisfaction with this situation is very widespread, official complaints are strongly prevented simply because all grantees want to continue receiving research grant support throughout their careers (i.e., do not bite the hand that feeds you!).  The corruption problem in modern science is ignored by many scientists because they are too busy worrying about their time and money problems, and do not wish to become  involved with investigations and charges that do not directly involve them personally.  Hence, the very largest job problems for scientists in universities do not readily encourage unionization and union-based protests.

For scientists in industrial laboratories, job problems are less frequent and seem less severe than in academia.  Their problems with time often are solved or at least minimized by gaining administrative approval to hire more support staff.  Any problems with research money frequently are dealt with internally when admninistrators shift job priorities and budgets.  Problems with corruption are less prominent in industrial labs, unless professional researchers are asked to change research results or interpretations of data in order to facilitate business aspects of their employer.  Industries are more on the side of their employees than are universities, and clearly need to promote the performance of their science employees as an important part of their drive for business success; thus, there presently is only a limited need for industrial scientists to seek recourse by unionization.

Some special situations in science could lead to unionization. 

Certain job situations for today’s professional scientists increasingly recall the historical tradition where groups of ordinary (non-science) workers formed unions to protect themselves from abusive employers.  I will briefly discuss here 3 solid examples of modern instances where efforts with unionization now are either progressing or being considered.

Postdoctoral Research Fellows typically spend several years doing full-time research before they are able to become good candidates for employment in universities, industrial  R&D centers, or science-related positions (see:  “All About Postdocs, Part I.  What are Postdocs and What Do they Do?” ).  When the number of available new science job positions declines, as in recent years, some Postdocs stay in these positions for at least a decade; although they are pleased to be paid to do research work, they are not truly independent, have minimal job security and limited retirement benefits, and, do not have a career or status appropriate to all their long training and professional research publications.  Postdocs easily can become captive workers.  Hence, these  temporary employees increasingly feel that “The Science System” is abusive and is taking advantage of them.  In response to complaints from Postdocs at many sifferent locations, universities try to make improvements by establishing some administrative post to handle all matters concerning Postdocs.  Little ever changes, so the complaints continue; any good changes are countered by the ready availability of many new foreign Ph.D.s eagerly seeking to come here as Postdoctoral Fellows (see:  “Why Does the United States now have so Very Many Foreign Graduate Students in Science?  Part I ” ).  Recently, some local or regional groups of Postdocs are critically discussing their predicament, and are seeking to develop changes in their present job status; whether this spreading discord will result in unionization of Postdocs remains to be seen.

University faculty are becoming unionized at some educational institutions, both here in the United States and in some foreign countries.  Several unions and related organizations now deal with educational activities and business matters, but these associations also include numerous non-science faculty.  University faculty usually are reluctant to join a union, but sooner or later come to see that there indeed is strength in numbers.  Faculty unions sometimes elicit good adjustments and improvements in such factors as salary levels, employment benefits, and, issuance of documentation about what is expected from faculty employees.  Union-derived positive changes generally affect all the faculty, rather than only members of the union.  The harsher and more one-sided modern universities become, the more will unionization of their faculty be encouraged.

Tenure for science faculty is a specific job problem that can be found both at universities and some industrial R&D centers.  Promotion to tenured rank uses somewhat different criteria at each school, and each individual candidate is at least slightly questionable.  Although nationally a subatantial number of scientists is involved with tenure each year, this issue at any one institution concerns only some few individuals; such fragmentation means that unionization of scientists as a means to improve this problem is very difficult.  If anyone compares the situation for tenure decisions at universities having faculty unions versus those that do not have unionized faculty, then it is obvious that the rules and regulations for achieving tenured rank are much more openly stated and carefully followed by the former institutions.  Due to mistakes and abuses with the tenure decision, this complex issue is actively discussed and of ongoing interest to the professional faculty unions. Junior faculty scientists constitute a hidden national class of good potential candidates for modern unionization.

Are there any alternatives to unions for scientists? 

In my opinion, unions presently only play a minor role for professional scientific researchers.  Since science workers in universities do have serious job problems, one must ask whether there are any other mechanisms available to advance the general job status of faculty scientists.  The answer to this question is “yes”!  Most professional scientists are members of at least one science society.  These national associations sponsor annual meetings (see: “All About ScienceMeetings” ), publish professional journals, organize educational endeavors, and promote the advancement of their discipline.  These organizations often have thousands of dues-paying members, and thus have notable similarities to large unions.  Some of the current issues for professional scientists described above seem very suitable to be addressed by the national science societies.

Concluding discussion. 

At present, unions are not numerous amongst all the many professional research scientists.  Some of the major job-related issues faced by research scientists at universities are well-suited to be ameliorated by unionization; however, the scientists actively confronting these issues at any one institution are not numerous, and so do not constitute the large number of workers traditionally engaged by unions.  When confronted with seemingly hopeless, unfair, and downright stupid job conditions, scientists are not  being unprofessional when they turn to unions so as to resolve the several difficult job problems in their profession.  Science societies have many features that are strongly analogous to unions, and should be encouraged to start helping their member scientists to better deal with major job-related issues.

 

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU 

                                                           UNDER THE WEBSITE TITLE

 

NEW KINDS OF RESEARCH GRANTS FOR SCIENCE, PART II: LET’S FINALLY RESOLVE VERY CONTROVERSIAL RESEARCH QUESTIONS!

 

It’s Not so Easy to Decide Where to Apply for a New Research Grant!! (http://dr-monsrs.net)It’s Not so Easy to Decide Where to Apply for a New Research Grant!!                       (http://dr-monsrs.net)
Many university researchers wish that new directions and new support programs would be initiated so as to remove or at least decrease the negative aspects of modern university science and of the current research grant system.  This short series of essays puts forth proposals for some really new and different kinds of research grants, as an attempt to insert new ideas for funding mechanisms.  Part I proposed the establishment of a new grant program to specifically support “pilot studies” in all branches of science (see “New Kinds of Research Grants for Science, Part I” ).  Part II now proposes a new research grant mechanism designed to finally resolve some long-standing controversies having big consequences for science and society. 

Giant controversies in science arise despite lots of good research.  Certain research disputes have become so controversial that they are deadlocked.   Traditional grant-supported research only increases the stalemated dispute and does not succeed in resolving the controversy. The federal granting agencies do not seem to recognize that the best answer to these large controversies is to not fund more of the usual limited investigations, but instead to sponsor better research!  Definitive additional experimental data and analysis will permit expert scientists to reach a consensus about what really is known or not known, and what is true or false.

What causes research controversies to become long-standing?   

Controversies in science are good except when disputes become stalemated and further ordinary research can make little or no progress.  Some disputes involve big disagreements about opposing interpretations of research results.  Others involve directed interpretations of scientific data coming from commercial manufacturers.  Occasionally, the scientists employed by national regulatory agencies are alleged to hide data or purposely misinterpret some test results so as to give a falsely positive evaluation (e.g., U.S. Food and Drug Agency).  A different type of dispute arises when ordinary people personally observe effects and activities that are quite different from the conclusions drawn by research scientists.  Big disputes are not just academic activities, but even can involve public health and safety.

Some examples of big controversies in current science. 

All very large controversies  are long-standing stalemated disputes, and often have big importance for society and science.  Examples of topics where research conclusions in both basic and applied science currently are widely disputed and very controversial include: (1) glyphosate (e.g., Is widespread use of this commercial chemical in modern agriculture poisoning all of us?), (2) white LED light bulbs (e.g., Do they truly pay for themselves in common household usage versus the cost of modern incandescent light bulbs?), (3) various vaccines (e.g., Do influenza vaccines also cause new flu infections? Do they cause autism or other health problems?), (4) cold fusion (e.g., Is cold fusion possible or not?), (5) post-Fukushima radiocontamination of oceans with uranium derivatives (e.g., Can entire oceans be decontaminated?  How can that be done?  What improved or new measures can reliably prevent any repetitions of a Fukushima-type disaster at nuclear power plants?), and, (6) global warming (e.g., How much do environmental temperatures naturally vary over shorter or longer periods of time?  Have temperatures recently increased more than natural variations?  Have humans and industries caused any increase in prevailing temperatures?).  Research results from all the many previous ordinary scientific studies on these questions have failed to permit a consensus to be reached; therefore, new kinds of research studies are needed in order to specifically break each stalemate and result in a new consensus view being accepted.

Details about proposed new research grants to resolve big controversies in science. 

I propose a new research grant program to support research studies on very large controversial questions in science.  This new kind of support program aims to finally resolve stalemates in giant controversies, so that basic and applied research then can proceed and progress without being tied down for more decades with endless controversy about the same disputes.  All proposed new projects must be realistically able to fully resolve a giant controversy in 10 or less years of experimental research studies.  Awards will range up to 10 years of support.  Awardees with a 5 year award can apply for one renewal of 5 more years; awardees for 10 years of support cannot be renewed.

Who can apply?  Applications will be accepted from scientists and engineers holding a doctoral degree, and being employed in universities or industrial research labs.  At least a 50% effort by the Principal Investigator (P.I.) is required.  Both individual scientists and small groups (i.e., up to a maximum of 12 doctoral co-investigators) can apply for research support from this new program.

Proposals:  Key questions to be answered and criitically evaluated in all proposals are: (1) exactly how can the selected controversy be fully resolved within a 10 year period of work, and, (2) how will the new results obtained cause a consensus to finally be reached?

Applications must give: (1) detailed description of the experimental data to be collected and analyzed, (2) different conclusions that could arise from full completion of the proposed new studies, and, (3) what will happen when the controversy finally is resolved.  All research facilities to be used must be desribed in detail.  Additionally, all applications must explain: (1) where the P.I. and all co-investigators initially stand with regard to the selected controversy, (2) how the expected new results will be able to finally resolve the controversy, rather than simply leading to further disputes, and, (3) exactly what will be known and what will remain unknown after the new studies are completed.  Applications should carefully justify percentage efforts of all participants, and, explain how the proposed studies relate to research projects supported by current awards to the P.I. and all co-investigators.

Due to the nature and size of the research questions involved in big controversies, small groups using highly coordinated experiments and bringing a good range of specific expertise to the project will receive preference; however, proposals from especially well-qualified individual investigators also will be welcomed.  The P.I. must have had at least one regular external research grant awarded (on any subject) within the past 6 years.  Applicants can request support funds for all usual kinds of research expenses, except that no funding for purchase of new research equipment is permitted; however, funds can be requested for the required construction of special research instruments enabling production of new data that will resolve the controversy.

How will proposals be evaluated?  Priority for funding will be evaluated by peer review primarily on the basis of: (1) quality of the planned new experiments and data analysis, (2) likelihood that completion of the proposed definitive studies will be fully completed within a 10-year period of support, and, (3) plans for finally reaching a general consensus amidst the ongoing disputes.

How will science benefit from resolving giant controversies?  Resolving big controversies will dramatically advance science by helping to invigorate the weak status of experimental research studies in U.S. universities (see:  “Could Science and Research now be Dying?” ).  Resolving a big controversy will: (1) preclude spending more research time and funding that leads nowhere; instead, later research will involve practical applications via new applied research and engineering developments, without distractions from commercial and political interests; and, (2) permit future research studies to be based on the new consensus conclusions, rather than on the same old controversial positions.   After each large controversy is resolved, smaller research questions following from the newly-accepted consensus conclusions can be supported through regular research grant mechanisms.

Discussion. 

Everone should be able to recognize the negative effects of stalemated giant controversies in modern science.  These not only cause wastage of time and money, but result in decreased public esteem for science, research, and scientists.  Resolution of these controversies will finally enable future research studies to investigate new details and specific questions, without being forced to be involved in the former dispute itself; continuing these controversies is pointless.  Science then will be able to free itself from the politics and emotions behind these controversies.  Future productive new research studies in science and engineering will be based upon the new consensus.  After the giant controversies finally are resolved, the progress of today’s science will be improved, and the public will benefit much from new practical advances.

 

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU 

                                                           UNDER THE WEBSITE TITLE

 

NEW KINDS OF RESEARCH GRANTS FOR SCIENCE, PART I: PILOT STUDIES!

 

It is Not so Easy to Decide Where to Send an Application for a New Science Research Grant! (http://dr-monsrs.net)

It’s Not so Easy to Decide Where to Submit a New Research Grant!!   (http://dr-monsrs.net)

 

Almost all scientists agree that the modern research grant system has both good and bad effects upon the science enterprise.  Periodic efforts by the largest granting agencies of the federal government create additional support opportunities for research scientists, but unfortunately these only seem to provide small improvements.  Scientific research costs billions of dollars annually in the United States (U.S.) (see:  “Why is Science so very Expensive?  Why do Research Experiments Cost so Much?”); financial support comes from government agencies (via taxpayers) and from industrial companies.  Background materials about the multibillion-dollars in research support funds currently awarded by the largest agencies are readily available on the internet for the National Science Foundation (NSF) (see:  “About the National Science Foundation” ) and the National Institutes of Health (NIH) (see:  “About National Institutes of Health” ).

Many university researchers wish that new directions and new support programs would be initiated so as to remove or decrease the negative aspects of the current research grant system.  This short series of essays puts forth proposals for some really new and different kinds of research grants, as an attempt to insert some new ideas for funding mechanisms.  The proposed initiatives will help invigorate the decayed status of experimental research studies in U.S. universities (see:  “Could Science and Research now be Dying?” ).  My proposals will function nicely within the present research grant system.

What are Pilot Studies, and Why are they Important?

Pilot studies are short-term experimental research efforts seeking to find which subjects, approaches, and methods are best suited to produce good results for a possible new research investigation.  Ideally, these initial studies result in identification of which designs for experiments will work, what experimental subjects can be used effectively, which research questions or hypotheses can be answered or tested by the proposed experiments, and what types of results will be obtained.  Pilot studies produce preliminary results confirming that a planned approach actually will answer a research question.

Only a limited time and effort usually can be expended on evaluating and devloping a potential new research project.  In modern universities, pilot studies now often are: (1) conducted as minor side efforts during the investigations funded by a research grant,  (2) assigned to a graduate student or a research technician, or, (3) done during a sabbatical leave.   Pilot studies are important because they show how raw theoretical ideas can be converted into practical reality (i.e., sometimes a very clever idea just will not work in the research laboratory).

The current research grant system requires preliminary data for all applications, but unofficially discourages pilot studies.  The grant system seeks solid new knowledge based on known approaches and building on already accomplished research results; this goal is inherently different from the exploratory nature of pilot studies.  Although most pilot studies are more or less supported by current research grant award(s), there is not much room in funded research projects for really creative experimentation, trying out unconventional new ideas, or starting new work in some different area of science; pilot studies focus on exactly these aspects of research, and are much less restricted than ongoing regular studies.  Additionally, use of research grant funds to conduct pilot studies is extremely difficult for the increasing number of good scientists now receiving awards with only partial funding.

The hidden value of pilot studies for science is that they often are individual expressions of creative and innovative ideas.  Once a research grant is awarded, most activities are set in place and scheduled, with little necessity to think any new thoughts.  Most scientists in universities stick to what they can get funded readily, and rarely switch projects or start work in other fields of science.  Pilot studies often include creative designs, new approaches, and very innovative ideas.  Hence, the most important role of pilot studies for science is that they stimulate new thoughts, new questions, and new experiments.  Thus,pilot studies represent initial inputs of new ideas into science. 

Support for pilot studies at present.

Current mechanisms for obtaining the necessary funds to conduct pilot studies are too limited.  I have not found any general supportive  programs at the NSF or NIH that fund only pilot study research.  Actual lab work in pilot studies more frequently is a short subsidiary effort funded by an ongoing research grant; there is little push to conduct creative or unconventional studies with really new research questions and ideas.   Some science organizations do make awards for pilot studies, and some medical schools do have special programs internally supporting pilot studies for their faculty researchers.

The only other general funding source for pilot studies appears to be crowdfunding.  This new type of public-supported and -donated funding usually features limited amounts of money and time, but that is exactly what is needed for pilot research.  Most applicants already have a well-equipped research lab.  However, the chief problem with crowdfunding is that the general public often cannot readily comprehend what is involved in pilot studies and how that is used by science; therefore, proposals by scientists to support new pilot studies cannot readily compete with proposals for conducting creative projects in the arts.  Accordingly, grant support for pilot studies is quite limited, and a new kind of support program for pilot studies now is needed!  

Details of the proposed new research grants for pilot studies.

I propose a new type of research grant, dedicated to enabling the conduct of more new pilot studies.  This new award program will support worthy pilot studies at universities for a duration of 1-4 months.   At least a 25-50% effort by the Principal Investigator (P.I.) is required.  No expenses for salary of the P.I. and no indirect costs will be supported.  Direct costs for supplies, lab personnel, and research travel (e.g., to conduct studies at an off-campus location) will be supported.  All awards are limited to a maximum total of $40,000.  Successful outcome to a pilot study supported by this new granting program is expected to lead to a new proposal for funding by a regular research grant mechanism.

Who can apply?  Applications for pilot study grants can be submitted by any scientist or engineer with a doctoral degree, and having access to adequate laboratory space and instrumentation facilities.  Applicants holding a faculty status are preferred.  Graduate students and Postdocs cannot apply for these grants.  Any individual scientist can have only one pilot study award for any calendar year.

Proposals:  Applications for new pilot studies can involve any area of modern science.  Proposals must fully describe the new experimental investigations to be conducted, examine all possible results, explain what research project could follow if the pilot studies are successful, and, give reasons how and why both this pilot study and the anticipated subsequent research work are important for science and society.  Available research facilities to be used must be described in detail.  All anticipated costs must be justified.  Pilot study grants are not supplements to currently awarded research grants; applications must make clear how the proposed pilot study relates to any and all current awards.   This new granting program has no renewals.  Awards can permit new pilot studies by science faculty currently without a research grant, or, by those wishing to begin research on a new and different subject or branch of acience.  Proposals with innovative and unconventional new approaches are welcomed.

How will proposaals be evaluated?  Priority for funding will be evaluated by peer review on the primary basis of: (1) quality of the planned new experiments, (2) likelihood that completion of the proposed pilot study will result in submission of a new meritorious research grant application, and (3) potential contributions to the progress of science.

How will science benefit from new grants for pilot studies?  The proposed new granting program will provide funds that: (1) increase the number of pilot studies being conducted, (2) enable preliminary studies to be made where simultaneous regular grant awards do not provide sufficient “extra funds” for pilot studies, and (3) provide opportunities for established university scientists to switch their research into new subjects or new areas of science.  This new kind of research grant will increase creative research ideas and investigations, enlarge the scope of innovative research activities at universities, and, encourage new ventures in scientific research by professional scientists and engineers.

Discussion.

There still are too many barriers to making important new research discoveries and advances.  In my opinion, the biggest problem in modern laboratory science is not  insufficient support money, but that there are restrictions for developing new ideas, thinking new thoughts about research,  using new designs for experiments, and, devising unconventional approaches to solve difficult or controversial research questions.  The new grants for pilot studies will be instrumental in overcoming some current restrictions limiting the progress of scientific research.  If support is given to pilot studies that investigate controversies, use creative designs with unconventional approaches, and start or switch research work onto very new projects, then significant research advances and science progress will follow.

By increasing the number of pilot studies, the number of really new scientific investigations will be fostered.  This new support mechanism provides a good answer to the increasingly frequent question from university scientists, “How can I test my new idea for research and get the required preliminary data when I do not now have a research grant?”  Former faculty grantees who have been hung up to dry or die will have a new opportunity to return to active research.  By fostering new developments, new ideas, and new activity in experimental research, the new pilot study grants will stimulate the improvement and progress of today’s science.

 

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU 

                                                                         UNDER THE WEBSITE TITLE

SCIENCE HAS BEEN MURDERED IN THE UNITED STATES, AS PROCLAIMED BY KEVIN RYAN AND PAUL CRAIG ROBERTS!

 Quotes (2015) from Kevin Roberts and Paul Craig Roberts (http://www.paulcraigroberts.org/2015/02/17/guest-column-kevin-ryan-science-died-911/)

Quotes (2015) from Kevin R. Ryan and Paul Craig Roberts, about the murder of science (http://www.paulcraigroberts.org/2015/02/17/guest-column-kevin-ryan-science-died-911/) 

Kevin R. Ryan was discharged from working at the Underwriters Laboratories after he began inquiring about test results for construction materials used for building the World Trade Center.  After their targeted destruction in 2001, he and others actively continue to investigate and question the validity of the government’s examinations and official explanation for that signal event in our country.  He has published several books about 9/11, and now co-edits several journals focused on that dramatic day (see: http://digwithin.net/about/ ).

Paul Craig Roberts is a very sharp and outspoken writer covering many topics about the economy, politics, history, and modern society, both in the United States (U.S.) and the world.  He acquired much inside knowledge about how our national government works during his earlier service as Assistant Secretary of the Treasury for Economic Policy (1981-82).  Dr. Roberts holds a Ph.D. in Economics (University of Virginia), and has published many incisive books.  His website, “Institute for Political Economy” (see: http://www.paulcraigroberts.org ), issues his perceptive examinations and forthright conclusions for many current events and the difficult problems we all face.

A very recent essay by Kevin Ryan, entitled “How Science Died on 9/11” (see: http://digwithin.net ), forms the core for Dr. Roberts’ thoughts about the viability of science in the modern U.S. (see:  http://www.paulcraigroberts.org/2015/02/17/guest-column-kevin-ryan-science-died-911/ ).  Both authors feel that science in America died after the 9/11 catastrophe when it was murdered by the numerous research scientists remaining silent about the many contradictions and false evidence for what really did occur and what couldnot have happened on that tragic day.  If research scientists fail to stay 100% honest then they have forsaken the main ideal of science (i.e., a search for the truth); there can be no such thing as partial or part-time honesty for scientists.  Ryan characterizes the government’s evidence and conclusions as involving “pseudo-science”, rather than real science.

For several years, a slowly increasing number of engineers, architects, and physical scientists have joined together to dispute the truth of the official explanations proposed for 9/11 by the U.S. federal government (see: “Science at 9/11” at: http://www.ae911truth.org ).  Ryan and Roverts believe that some or many of the other American scientists must have: (1) foresaken their search for the truth, (2) knowingly espoused false conclusions, or (3) remained silent about the scientific and engineering evidence supporting demolition as the true cause for the collapse of the 3 buildings on 9/11.

Roberts then goes even further, by ascribing the unexpected silence of many scientists to the facts that: (1) science today can be bought, (2) money now can determine results in science, and. (3) university research scientists all are totally dependent during their career upon the continued flow of research grant money from the governmental science agencies, and therefore they dare not dispute the methods or conclusions of the official governmental investigation of 9/11.

Both authors conclude that science now is dead in the U.S.  Ryan and Roberts use their own analysis and critical reasoning to come to many of the same conclusions about the dismal health of modern science that I described earlier (see: “Could Science and Research now be Dying?” ).   Although I do believe that science now is dying, I must reject their all-encompassing conclusion that science is dead, because some good researchers do continue their productive search for new truth and thereby are making important new advances in science and technology.   Thus, I feel that science is in a morbid state, but is not yet dead.  Nevertheless, I must agree with their contention that most or all otherwise good scientists have not protested or spoken out about the falsity of research and the trashing of standards for total honesty in science, with regard to finding the true causes of the events on 9/11.  Truth no longer matters for modern science as much as does money; it is indeed very sad that today money is supreme at modern universities (see “Money now is Everything in Scientific Research at Universities” ), thereby badly undercutting the integrity of university science.

Kevin Ryan should be complimented for his courageous questioning about the many scientific and engineering findings that contradict the official conclusions for what happened on 9/11.  Paul Craig Roberts emphasizes exactly what is wrong with today’s university science in the U.S.  Clearly, the misuse of money has made traditional science so hard to pursue with honestly that it has either murdered or mortally wounded scientific research.  These 2 authors should be praised for realizing the bad consequences of money upon being totally honest in science, and for forcefully bringing public attention to the vigorous dispute about what is true and what is false concerning 9/11.   Eventually, everyone else will recognize both the unpleasant truth about 9/11, and the bad consequences of the current morbid decay in science.

Dr.M most heartily recommends that everyone should read and think about this very stimulating and provocative essay by Kevin Ryan and Paul Craig Roberts (see:http://www.paulcraigroberts.org/2015/02/17/guest-column-kevin-ryan-science-died-911/ ).

 

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU 

                                                         UNDER THE WEBSITE TITLE

 

WHAT IS GOOD VERSUS BAD RESEARCH? HOW IS THIS DETERMINED?

 

Judging Research Quality is Not a Simple Matter! (http://dr-monsrs.net)

Judging Research Quality is Not a Simple Matter!   (http://dr-monsrs.net)

A scholarly search for the truth, obtained by observation and experimental studies, often involves obtaining detailed data to test one or more hypotheses.  Ideally, experimental studies answer a research question in a complete and unambiguous manner that is consistent with other known results.  Research always is chancy, and the expected results are not always obtained even when well-designed experiments are conducted by experienced scientists.

Good research uses well-designed experiments, includes adequate controls, and leads to solid interpretations.  The conclusions drawn from good research enable accurate predictions to be made, and can easily be related to existing bodies of other knowledge.  Future experiments can build successfully upon what is established from good research.

Bad research is the opposite of good research.  It results from poorly designed experiments, and can feature incomplete or inadequate controls.  The conclusions drawn from bad research usually are later shown to be completely or partly invalid; they make only incorrect predictions, and are inconsistent with other bodies of knowledge.  The results from bad research often are not repeatable, and form a defective basis for any further studies.

Good versus bad research. 

All scientists hope to conduct good research.  Typical questions for judging research quality include the following: (1)  are the experiments well-designed and properly conducted; (2) are the controls fully adequate; (3)  are the data complete; (4)  are the data and their interpretations self-consistent; (5)  do the experimental data support the conclusions of the research study; (6)  are the conclusions consistent with other data and known facts; and, (7)  do these experiments answer the selected research question(s)?  Failure or insufficiency in any of these parameters is a typical sign of bad research.

The judgemnent of research quality needs to be distinguished from several related  evaluations.  Quality of research is distinguished from quality of the research subject (e.g., either good or bad research investigations can be conducted on how to add multivitamins to a metropolitan water supply), and from good or bad usage of the research findings (e.g., good chemical research might later be utilized to make some extremely toxic new complex).  Experimental results supporting a well-known theory or popular concept do not necessarily mean that this research is good; similarly, experimental studies that contradict or do not agree with some well-established theory are not necessarily bad.

Research in any branch or category of science can be judged to be good or bad.  In general, judgements of research quality do not have any intermediate levels.  These determinations are made in basic or applied research, theoretical or experimental research, small or giant studies, field or laboratory research, simple or complex research, etc.  As one example, consider a modern research study of butterflies inside Columbia, which finds that one species there is simultaneously present in Argentina.  Assume here that detailed morphological measurements, molecular genetics, and field observations were conducted properly, etc., and that all data show complete taxonomic identity, while other species in Argentina lack identity.  Although there is no obvious usefulness in this discovery, it is a clear example of good research in basic science.

Who exactly best determines.whether research is good or bad?  Here, a critical judgement is sought, and not a casual opinion.  Since the necessary very careful evaluation of the experiments involved in any research project can be quite complex, this determination is best made by knowledgeable experts (i.e., other scientists).  This judgement must be made objectively without regard to personal interest or emotional preferences.

Who utilizes the judgement of good vs. bad research? 

The critical evaluation of research quality is part of several major job activities for university scientists, including determining priority scores for research grant applications and proposals, and, examination of manuscripts submitted for publication in a science journal.  In both cases, peer review utilizes the evaluation by scientists who have expertise in the same area as the applicant or author.

Peer review of proposals and applications for financial support of research aims to make judgements be as objective as possible .  To determine fundability, the design of experiments, adequacy of controls, methods for data analysis, and ability to answer the research questions proposed first are evaluated.  The final conclusion for fundability also utilizes certain other criteria besides determining whether the research is good or bad (e.g., capability to answer the selected research questions, chances for success of the project in the time period proposed, previous training and experience with the methodologies used, atmosphere at the institution, track record of the applicant for success in previous research projects, relevancy to program targets, use of  undergraduate students or special groups of people, research safety considerations (e.g., exposure to disease agents, toxins, or radioactive materials, etc.).  A listing of official criteria for evaluating merit in the very numerous research grant applications sent to the National Institutes of Health  (see: http://grants.nih.gov/grants/peer/critiques/rpg.htm ) or to the National Science Foundation (see:  http://www.nsf.gov/nsb/publications/2011/meritreviewcriteria.pdf ) are published at periodic intervals.

Not all manuscripts submitted to science journals are accepted for publication.   To determine publishability, the journal editor and assigned referees first take a critical look at whether the research reported is good or bad, and then examine the conclusions drawn from the experimental data.  If their evaluations conclude that something is missing, the experiments are poorly designed, controls are inadequate, interpretations are not supported, data are incomplete, the subject area is not relevant to the journals’s focus, etc., then a manuscript will be rejected.  The critical comments are relayed to the authors so they can try to make the needed additions, deletions, and other changes; after consideration of the revised manuscript, a final decision about publishability then is made and reported to the authors.

What can go wrong with judging good vs. bad research? 

There are quite a few possibilities where the examination of research quality can go wrong.  Selection of reviewers with insufficient expertise excourages mistakes to be made.  Selection of scientists as reviewers who are unable to put aside the fact that they are competing with the applicant for research grant awards also leads to unfortunate mistakes.  In the modern era, time is very precious for all research scientists working at universities; doing a rush job with evaluating research quality saves time, but increases the chance of making mistakes.  As personal integerity decreases, there is increased likelihood that rigor of this important task for making objective evaluations is not maintained (e.g., ignoring some defect for a friend, colleague at the same institution, or former associate).  In other cases, rigor is undercut by the unethical desire to please someone or to trade favors (e.g., “I will overlook this mistake in your manuscript if you do the same when you review my manuscripts!”).  The agencies awarding research grants take explicit steps to try to preclude these improper diversions from good ethical practices; most professional science journals require at least two independent expert reviewers to critically examine each manuscript, in order to decrease the chance that any mistaken or improper judgement will be made.

Concluding remarks. 

Determination of good versus bad research can be made readily using standardized criteria for evaluating the quality of the experiments, particularly if this review is performed by several experts.  These detailed evaluations must be done very carefully, and demand the critical capabilities of other expert scientists working in the same area.  These peer evaluations constitute a major part of the review process for applications seeking research grant support, and of manuscripts submitted to science journals for publication.  Determining the quality of research is not identical to determining the quality of science (i.e., good research can be part of bad science, and vice versa).  Critical determinations of research quality are important to help science be rigorous, objective, and meaningful. 

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                           UNDER THE WEBSITE TITLE

 

SOME UNIVERSITY RESEARCH SCIENTISTS DO INDEED HAVE GUTS!

 

Don't Laugh, since He can See the Truth very Clearly!! (http://dr-monsrs.net}

Don’t Laugh!    He can See the Truth very, very Clearly!!     (http://dr-monsrs.net)

Most people have a distorted view about what scientists working at universities really are like.  There certainly is some truth in the common feeling that scientists researching in the ivory tower have it easy while living a safe and comfortable life without ever working up a sweat.  In the modern era many university scientists worry more about their research grant(s) and their lab space assignment than they do about how to get a difficult experiment to finally work, or whether alternative explanations for their recent results make more sense than a traditional interpretation.

There are a few exceptions to such generalizations, and some university science faculty do maintain their individuality and personal standards.  These persons frequently are known as troublemakers, weirdos, hard boiled eggs, creative geniuses, misfits, or ambitious workaholics.  Some of the same characteristics desired for successful research scientists also are found prominently in these distinctive individuals; such features include curiosity, creativity, and  inventiveness, as I have explained earlier (see: “Curiosity, Creativity, Inventiveness, and Individualism in Science” ).  In addition, these same scientists often are characterized by such features as idealism, pig-headedness, not fearing to speak the truth, and, dedication to being a scientist.

This report relates a few true stories about actual university scientists I have known.  All have the personal courage to fight the system, and are unconventional.  Their identity must remain a secret in order to protect the guilty!

University scientist X attacks the glorified institution of tenure! 

Scientist X is a very successful cell biologist who is hard-working, creative, well-liked, and highly individualistic.  He works at a very large state university, and has had his research grants renewed throughout his career.  He was overwhelmingly qualified to be promoted and tenured.  However, because he is independently wealthy, he decided to forego all the time and scrutiny involved with this academic ritual.  All other faculty are totally enthusiastic to accept whatever is necessary to get tenured.  His Chair, the Dean, and the senior professors in his department all tried to persuade him to accept becoming tenured, but he just would not give in.

Academic tenure traditionally gives a faculty member the right to speak their opinion without fear of being fired by the employer.  How in the world can any university faculty not want to become tenured?  Prof. X readily explained his most unusal decision with something like the following (paraphrased):  “I do not have time for tenure.  I do not need tenure, since I can easily get a new faculty position elsewhere if I am fired here.  I always say what is on my mind, so tenure means nothing to me.  I am doing a good job here, so why do I have to get it?”  No-one could remember such statements ever being offered before!  His fellow faculty frequently commented about Prof. X (paraphrased):  “What is wrong with him?  He is just unbelievable!  Tenure is so important and utterly necessary!   Poor Prof. X must be mad!  No professor can survive without tenure!”

For university faculty members, the decision about tenure is required, meaning that faculty candidates either must be retained with the promotion or else they are discharged from employement (i.e., “up, or out”).  After much further disputation, Prof. X still would not give in!  He reportedly told his superiors that he would be pleased to just continue doing his usual very good work without having any tenured status, but that was impossible according to the University bylaws!  Finally, a special arrangement was worked out when his employer realized that they strongly wanted him to continue working at this university; Prof. X became tenured without being evaluated further or having to sign any papers.

This real story is amazingly unusual!  Nobody else ever rejects the chance to be promoted to the tenured rank, or actually offers reasons for that rejection.  Prof. X must be admired for having the guts to be outspoken and self-directed.  He stuck to his personal beliefs and challenged a long-standing university tradition.  In retrospect today, it is totally clear that becoming tenured made no difference at all to the continued good success of Prof. X as a professional research scientist.

University scientist Y pays for some of his own research expenses! 

Scientist Y is unusual because he, unlike all other university faculty, is willing to spend his own personal money for some of his business expenses (i.e., payment for purchases of some small research supplies and for transportation to national or international science meetings).  Other science faculty at his urban university never ever do that; they could not understand Prof. Y and condemned his judgment about using his own funds.  They would simply not go to any science meeting unless their travel and hotel expenses were paid for by external funds.  Some of the other faculty thought that Prof. Y definitely must be some kind of weirdo!

When asked to explain his unusual willingness to spend his own personal money for travel expenses to participate in a science meeting, he said that he viewed this as an investment in himself as a professional research scientist.  He actually was buying additional knowledge (i.e., the talks and posters he witnessed), making new contacts, asking questions about research to scientists he met, and interacting with some attendees as a potential collaborator.  Putting these same funds into investments indeed might get him more money, but that did not really help his science career as much as what he gained by being at the meetings.

This unusual use of personal money undoubtedly was an expression of Prof. Y’s very strong  commitment to science.  Many famous scientists show this same commitment as a notable feature of their professional success.  Such personal commitment unfortunately is becoming infrequent in the modern age.

University scientist Z calls into question whether a research grant is necessary for  faculty  scientists to continue researching and publishing! 

Professor Z lost his research grant 1 year ago, and is trying either to get it back or to acquire a new award.  Traditionally, for all faculty at his university, losing their external grant support means that they will soon have to relinquish their laboratory space assignment unless they can soon acquire new research funding.  Although composing several applications takes up almost all of his time, Prof. Z continues to work actively in his research lab and has published several new research reports.  He openly maintains that: (1) he had purchased enough research supplies to last for another few years, (2) he and one graduate student continue their research work, so no additional lab personnel are needed, (3) his output of new peer-reviewed research reports in good journals continues just as it did before he lost his grant, and, (4) he wants to continue his lab research.

Other faculty now complain to the Chair that they need more lab space for their grant-supported projects, and want Prof. Z’s space assignment to be re-assigned to them.  It is totally unheard of that any former grantee can continue to do research and to issue new publications without having a research grant award.  His Chair is very uneasy with this situation, particularly because Prof. Z is still actively researching.  Prof. Z’s intention clearly calls into question whether researching can be done without having a grant.

This dilemma arises because all positions are seen only as being black and white, rather than as different shades of gray.  Even Prof. Z admits that he did even more when he was funded than at present.  Nevertheless, it is completely false to state that Prof. Z presently is not producing good research, because he obviously still is doing so.  As more and more university faculty members lose their external research grant awards, this entire situation now will arise more frequently; with the vicious cut-throat hyper-competition for research grants now in effect (see:  “All About Today’s Hyper-Competition for Research Grants” ), the former grantees almost always rapidly lose their argument and become very bitter.  The usual response to this situation indicates that modern universities are after profits from research grants more than seeking additional contributions of significant new knowledge and understanding; in other words, the inflow of money is more valuable to them than the production of new knowledge.

Concluding remarks.  

These stories illustrate that some individual scientists at universities do have much personal integrity and a strong commitment to their work.  But, it certainly takes guts to be different!  Scientists in academia usually must restrain their individualism in order to function and succeed in their job situation.  The personal courage and strong determination of the individual scientists described above should be applauded by all the other faculty; instead, those individuals usually are ridiculed.  It never is easy to stand up and do what one believes to be right when many others have the opposite opinion.  These real stories show that some academic traditions and rules are made to be broken.  The story about Prof. X particularly shows that modern universities must be forced to do the right thing!

 

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU 

                                                         UNDER THE WEBSITE TITLE

 

 

BASIC VERSUS APPLIED SCIENCE: ARE THERE ALTERNATIVES TO FUNDING BASIC RESEARCH BY GRANTS?

Both basic research and applied research need to be supported by grant awards! (http://dr-monsrs.net)

Two high school teachers discuss basic and applied research at universities!!            (http://dr-monsrs.net)

Basic science uses experimental research to seek new truths and test hypotheses.  Applied science seeks to improve or invent devices, methods, or processes so they have better output (e.g., faster or slower, lighter, more efficient, less expensive, more durable, etc.). Research in basic and applied science at universities both need to be supported by external research grants.  At present, the large federal granting agencies increasingly seem to favor making awards for projects with applied research; awards to acquire knowledge for its own sake in basic research studies now are not considered as worthwhile for funding as formerly.

What good is pure basic research? 

The classical work of the great pioneers in science, ranging from Galileo to Linus Pauling, all was pure basic science.  Nevertheless, research studies in modern basic science typically are seen as ridiculous or worthless by ordinary adults (e.g., What happens if entire chloroplasts isolated from plant cells are inserted into living animal cells?).  This viewpoint is very short-sighted because it ignores the simple fact that all research progress is part of a continuum of investigations by many different scientists.  Almost all new devices or items of practical use follow this general pathway of development; the final output of applied research can occur several decades after the original discovery by basic research.  Thus, esoteric new knowledge from basic science studies often becomes useful and important when it generates later research in applied science and engineering.

The basis for all later developments in applied science is the open research in basic science. The number one example of this is the transistor.  When transistors were first made by Bardeen and others, they were viewed as “lab curiosities” that had no potential for practical usage [1].  No-one foresaw their eventual revolutionary significance for the myriad electronic devices and computers in today’s  world.

How is it decided what research actually is conducted? 

In an ideal world, professional scientists with a Ph.D. decide what to investigate and how to carry out the needed experiments.  In the present world, faculty scientists at universities investigate only what can be supported by external research grant awards.  This necessity  influences and restricts university scientists right from their first job since applicants for a new research grant always very carefully inspect published announcements stating which topics and areas are currently being targeted by the governmental funding agencies; these agencies thereby have a very large influence on which research studies can be pursued.  Governmental officials at agencies awarding research grants can silently direct research efforts into chosen directions, and ensure that certain research topics receive more attention by university research scientists.  An analogous direction of work occurs for most industrial researchers, since they must work only on those research questions having significance for their commercial employer.

The governmental control of funding for research investigations in science is problematic since the funding agencies increasingly seem to favor funding of research projects in applied science.  This is due in part to the understandable desire to obtain progress within their area of special interest (e.g., energy, fuels, health, military, etc.), and to show the tax-paying public that their support for research studies produces useful new devices or new processes with practical benefits to many.  The funding agencies unfortunately do not understand that basic studies almost always are the precursors for later developments by applied scientists and engineers.  Thus, these funding agencies have an inherent conflictbetween providing funding for the basic or applied categories of research. Decreasing the awards for basic science later will cause decreases in the output of applied science.

What are the consequences of favored funding for applied science? 

Any favoring of applied science over basic science for receiving external funding awards inevitably has negative consequences on the progress of science.  First, it decreases the amount of research funds available to support pure basic research.  Second, it conflicts with the well-known fact that almost all important advances and engineering developments originate from some earlier finding(s) by pure basic researchers; decreased funding for basic research later will cause fewer results with applied research.  Third, all the research subjects not selected for targeted funding in applied science thereby are disfavored, and these consequently become less studied.  Fourth, the origin for most new ideas, new concepts, breakthrough developments, and new directions in science is the individual research scientist (see earlier discussions on “Individual Work versus Group Efforts in Scientific Research” and “Curiosity, Creativity, Inventiveness, and Individualism in Science” ).  Applied research tends to decrease the freedom to be creative; that also encourages formation of research groups and decreases the number of grant-holding scientists functioning as individual research workers.

Are there alternatives in funding or support mechanisms for basic science?

Very small short-term research studies often can be supported by either personal funds orcrowdfunding (see earlier discussion in: “Other Jobs for Scientists, Part III.  Unconventional Approaches to Find or Create Employment Opportunities” ).  Some granting agencies have programs offering small amounts of financial support for one year of work; these special opportunities are particularly valuable for scientists seeking to conduct pilot studies.  Where larger research expenses are needed, those mechanisms for support of small research are insufficient, and it is necessary to obtain a standard research grant from the external support agencies.  For subsequent investigations, most grant-holding scientists at universities choose to apply for renewal of their current award; once on the train, it seems easier to stay on board instead of trying to jump off to transfer onto a different train!

It is not always recognized that a few organizations offer substantial cash prizes for certain targeted competitions (e.g., design a safe human-powered aircraft, develop an efficient system for producing bulk proteins from single-celled algae at special indoor or outdoor farms, construct a practical and inexpensive all-electric gasoline-free automobile, etc.).  Such projects are strongly involved with applied research, although they do involve whatever materials and directions the scientist-inventor wishes to utilize.  These special competitive prizes are retrospective awards given after the research studies and engineering developments are finished; that is totally the opposite of standard governmental research grants which give prospective awards for planned research workbefore it has been conducted.

Retrospective research grant awards also are found in ongoing support programs of some other countries, but are not usual in the USA.  Those countries support their research scientists at universities and institutes by routinely awarding them general operating funds (e.g., $30,000/year); these funds provide support for such needed expenses as the work of graduate students, purchase of research supplies, unanticipated research costs (e.g., repair of a broken lab instrument), travel to a science meeting or to the lab of a collaborator, etc.  This supportive practice is a lifesaver whenever an active scientist’s research grant is not renewed.

Support for basic research inside the current federal research grant system

The diminishing support for basic research necessitates looking for alternative funding sources.  It is not always recognized that normal federal research grants do allow some awarded funds to be utilized for new basic science investigations, so long as these have some relationship to the main subject of interest and do not require very large amounts of money.  This usage of research grant funds usually is considered as a justified expense when the Principal Investigator approves these expenditures.  Such side-projects often are labelled as being pilot studies, since they can produce enough important data to later be included in an application for a new separate research grant.

Concluding remarks

Support by the research grant system for basic research studies now is decreasing while  support for applied research studies increases.  Knowledge for its own sake always will be important, and is the basis for subsequent developments in applied science and engineering.  Both the basic and applied types of research studies are valuable for the science enterprise and society.  The current disfavoring of basic research studies should be stopped, because that hurts the future promise of research studies in both basic and applied science; at present, basic science needs to be encouraged more.    University scientists must develop and use additional or unconventional means to enable them to conduct the needed basic science investigations.

[1]  Mullis, K. B., 1987.  Conversation with John Bardeen.  Available on the internet at:      http://www.karymullis.com/pdf/interview-jbardeen.pdf .

 

 

 GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                           UNDER THE WEBSITE TITLE

 

AFTER SPENDING BILLIONS, WHY HAVE SCIENTISTS NOT YET FOUND A CURE FOR CANCER?

 

Cancer Research is having some Good Effects, but even More Progress is Needed! (http://dr-monsrs.net)

Cancer Research is having some Good Effects, but Much More Progress is Needed! (http://dr-monsrs.net)

 Just about everyone on this planet would dearly love to honor any research scientist who can find a cure for cancer.  Despite all the money and time already poured into extensive research efforts in labs and hospitals, the goal of curing this devastating clinical disease still remains elusive; about 589,000 cancer patients are expected to die from cancer in 2015 [1].  A big question thus arises, “What good is all the research and money spent on trying to conquer cancer, if a cure still has not been found after all these years?” The more you know about cancer as a biological phenomenon, the better will you be able to understand why attaining a general cure is so very, very difficult.  This brief essay will teach you about the reasons for this frustrating situation that seems to damn the efforts of dedicated researchers in both basic and clinical science.

A brief background of essentials about cancer

At its most fundamental level, the biological phenomenon of cancer takes place in our cells.  All cancers are thought to originate from one normal cell that changes into a cancer cell when it becomes “neoplastic”; this term means that the abnormal cell(s) divide independently of the regulatory mechanisms controlling cell growth and division. Multiple causes for development of cancer are recognized (e.g., chemicals, chronic inflammation, genetic heredity, mutagenesis, radiation, viruses).  Unrestrained growth of neoplastic cells usually results in a “tumor”; this term specifically means some localized enlargement or swelling filled with the proliferating neoplastic cells.  A neoplasm can be benign, meaning that it enlarges but does not spread to distant locations; this is contrasted to malignant neoplasms, where the abnormal cells can metastasize (i.e., spread to other regions of the body and start growing there).

About 1.67 million people are expected to be newly diagnosed with cancer in 2015 [1]. Cancer is not always lethal (i.e., some 14 million cancer survivors now are alive and kicking (see:  http://www.cancer.org/ ))!  Some cancer patients are being cured (i.e., their neoplastic cells can be removed, caused to die, or to stop proliferating).  Cures can be the result of surgical excision, localized exposure to lethal irradiation (i.e., radiotherapy), treatment with chemicals that cause cell death (i.e., chemotherapy), systemic exposure to high tech antibody treatments (i.e., immunotherapy), or, other newly developed experimental therapies.  When treated cancer patients retain their disease, therapy can slow its progression and ameliorate their quality of life.   Even if no treatments work, the situation for any cancer patient is never absolutely hopeless because there are some spontaneous remissions where the neoplasm miraculously regresses and disappears.

“Cancer” is a very complex and variable entity  

Cancer is an extremely complex biological phenomenon showing enormous variability (e.g., age of patient, cell of origin, general health status, genetic background, location in an organ, nutritional status, presence or absence of continued development of neoplasia (i.e.,carcinogenesis), presence or absence of enhancers, rate of growth and division, type and dosage of therapy administered, etc.). There are over 200 different types of cells in the human body, many of which can become neoplastic.  Neoplastic cells are very similar tonormal cells, but show some changes that give rise to aberrant functional activities.  In particular, neoplastic cells reproduce without regard to the normal controls that restrict cell growth and division.  Almost all the different varieties of cancer cells divide more frequently than do their normal (non-neoplastic) counterparts.  In addition, neoplastic cells usually change their normal shape(s) and adhere to each other less strongly.

The enormous complexity and variability of neoplasia are the fundamental factor making the search for a general cure of cancer truly difficult.  These features also make it wrong to refer to cancer as a singular term, e.g., “the disease, cancer”, because there are so many different cancers and each shows variability.  The term “cancer” thus can be thought of as being analogous to the generic term “paint”; that label says nothing at all about the type of paint, its color, what it is made of, which kinds of  surfaces it can be applied to, how it is applied, its durability, etc.  The great complexity of cancer is strongly evidenced by the fact that a chemical agent completely curing one type of cancer typically has few effect(s) on many other kinds of neoplasms.

What can laboratory research do for cancer patients? 

The most essential reason why cancer can not presently be cured despite therapeutic advances and improved methods for early detection is that this family of neoplastic diseases involves multiple different causes, many different cell types, and numerous variable conditions of human existence (e.g., quality and quantity of nutrition, hygiene, exposure to dangerous environments, screening and early detection, clinical monitoring, availability of expensive therapeutic protocols, etc.).  The targets of treatments for cancer are the neoplastic cells; these are dynamic targets that change their status, properties, and metabolism as clinical therapy progresses.  Despite tons of research, there still is no accepted general or molecular distinction known between the normal and neoplastic states of each cell type; this essential information will become available later through additional laboratory research studies.  The complexity and variability of cancers, along with the absence of full knowledge about many key parts of neoplasia, have even led some to speculate that the long-sought goal of finding a general cure for cancer actually might be impossible.

At present, basic understanding about the whys and wherefores of neoplasia remains very incomplete.   Once there will be much greater understanding about the nature of neoplastic versus normal cells, and about the mechanisms for carcinogenesis, then the chance for applied research to develop cures for cancer undoubtedly will increase.  The main hope for finding a general cure for cancer therefore is to continue basic research vigorously; in my view, especially needed are development of very new approaches for clinical therapy, and formulation of very innovative concepts or unconventional theories that can be tested experimentally by lab studies.  Any proposals that all research grants should be awarded only for cancer research, or that all scientists should work only on studies of cancer, are idiotic and as misguided as are proposals that it is pointless to spend more billions trying to find a general cure for cancer.  All of us, and particularly cancer patients, must have great patience while the needed enormous amount of experimental work by both experienced and new investigators progresses.

What can clinical research do for cancer patients? 

The fight against cancer now involves current efforts by clinical scientists (i.e., oncologists, who are MDs specializing in treating cancer patients) to find: (1) ways for earlier detection, (2) more effective means to kill cancer cells while leaving neighboring normal cells intact, (3) the genetic and physiological conditions needed to allow cancer cells to proliferate, (4) prevention of metastasis, (5) induced modulation of the immune system for experimental immunotherapy, (6) invention of new and better ways to use chemotherapy, (7) invention of new ways to improve specificity and lethal effects of radiotherapy, (8) identification of anti-neoplastic nutritional effects upon cancer cells, (9) development of new very innovative mechanisms and approaches to target and kill cancer cells, and, (10) development of more effective and less toxic multimodal therapies for cancer patients, etc.  All this activity requires the work of doctoral scientists in many labs, and of clinical oncologists in many hospitals.  Adjunctive work for the production and research use of very special new materials (e.g., new antibodies and immunomodulators, new genetic strains of cultured cells, new chemicals, new nanostructures as targeting devices and carriers of toxins, new detections of small cancers via advanced imaging assays, etc.) also are needed.  Extensive clinical trials must be conducted to determine the efficacy and safety of all newly successful  research treatments for human cancer patients.

Is research progress against cancer being made?  

All basic or clinical studies of cancer are neither easy nor inexpensive.  It is reassuring to know that good progress is being made in the clinical treatment of some previously untreatable cancers.  Clinical applied research often is based upon previous basic research findings.  Many cancer patients now live longer and more actively due to their new clinical treatment(s).  Research progress indeed is being made; all the money and time spent with cancer research is having some very good effects for cancer patients, even though the final victory has not yet been accomplished.

Many scientists and clinicians working with cancer have the feeling that if there was a much greater fundamental understanding of neoplasia at the cellular, molecular, and genetic levels, then improved therapies and better preventive measures could and would be developed.  Current research is looking closely at the interactions of different gene expressions and protein networks, within normal versus neoplastic cells.   Further progress towards the goal of curing cancer undoubtedly will involve tackling difficult questions in both very basic science (e.g., exactly how does the metabolism of neoplastic cells differ from that of their pre-neoplastic or normal counterparts?) and applied clinical science (e.g., how can oncologists cause repression or expression of certain target genes in a safe manner within human cancer patients?).  The road to a cure will be long, hard, and not straight; thereby it will take great determination, long persistence, and very creative experiments before success eventually can be obtained.

Concluding remarks

The materials presented above should enable all readers to have a basic idea of the nature of cancer, and to recognize why cancer in human patients is a very difficult disease to understand and to cure.  Although the ultimate goal has not been reached yet, cancer research continues to progress slowly and incrementally.  In my view, this will be made speedier by (1) more emphasis on cancer prevention, (2) evaluating completely new ideas for clinical treatment of cancer patients, and (3) development of innovative concepts about the fundamental nature of neoplasia.  Patience with the progress of cancer research now is needed more than is additional support money.  Cancer research requires intense dedication and long efforts by laboratory scientists, clinical oncologists, and cancer patients.  These efforts necessitate spending additional enormous sums of money to support the hospital and lab work.   Research results that do not produce a general cure for cancer still are valuable since the new facts acquired can be used subsequently for the generation of better experimental studies and of advanced clinical treatments.

A  postscript from Dr.M

For those seeking further information or news about cancer, treatments for cancer patients, incidence, clinical cures and new trials, cancer research, costs, etc., I recommend that you visit the excellent websites of the Americal Cancer Society (see:  http://www.cancer.org/ ) and the National Cancer Institute (see:  http://www.cancer.gov ).

 

[1]  Simon, S., for the American Cancer Society, 2014.  Facts and figures report: 1.5 million cancer deaths avoided in 2 decades.  See:  http://www.cancer.org/cancer/news/news/facts-figures-report-cancer-deaths-avoided-in-2-decades .

 

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                            UNDER THE WEBSITE TITLE

 

YOU WILL NEVER HEAR ABOUT THESE GOOD SCIENTISTS (PART II)!

You Will Never Hear About the Life of These Good Scientists! (http://dr-monsrs.net)

You Will Never Hear About the Life of These Good Scientists!     (http://dr-monsrs.net)

 

In Part I, a fictional story about a tenured Associate Professor, Dr. Joe Smith, was presented to illustrate some of the job problems that can be encountered by science faculty members working in modern universities (see:  http://dr-monsrs.net/2014/12/24/you-will-never-hear-about-these-good-scientists-part-i/ ).  These situations do not occur at all universities and medical schools, but the possibility is always there.  Part II now describes the story of an active young member of the science faculty in a different department at the same large state university; her problematic situation is different, but occurs commonly and often has sad consequences.

Jill Annette Jones, Ph.D.

Jill A. Jones is a 26 year old new faculty member in the small Department of Neuroscience.  As an untenured Assistant Professor, she lectures in a large team-taught required course and also presents her own graduate school course every year; student critiques about her teaching activities are very favorable.  Her research investigates laboratory models for the membranes of nerve cells; she has received a research grant from the National Science Foundation (NSF) to support her experimental studies.  Jill Annette is very dedicated to her career as a professional research scientist and enjoys working on research experiments in her laboratory.  She has postponed thoughts about getting married and having children until after she becomes 30 years old.  The next steps in her career as a university scientist are to get re-appointed as an Assistant Professor, and to merit the renewal of her NSF research grant.  Overall, she is proud and satisfied with her university employment, and does not feel that she has been hindered at all by being female.

One day, Jill Annette is invited to visit her very senior Chairman.  Following a few pleasantries, the following conversation takes place.

Chair:  “Jill, I want to discuss your faculty activities here.”

Jill:  “Okay.  What about them?”

Chair:  “You are publishing good research results, but you never have articles in the main Neuroscience journals.  Why is that?”

Jill:  “My research on neuronal membranes is a better fit for Biophysics journals.  What is the problem with that?

Chair:  “It is just that you appear to be functioning outside our special field, and are not on the same wavelength everybody else is on.”

Jill:  “Neuroscience is still innovating and developing its methodologies further.  The older professors in our Department should be glad they have a young faculty member here who is a modern type of Neuroscientist!  Many of them barely seem to know about the new approaches for research in Neuroscience!  Who are they to say where new aspects of Neuroscience should be published?”

Chair:  “Even if you are totally correct, you are making a strategic mistake!  You must realize that you and your work will be judged by the senior faculty for your upcoming re-appointment promotion.  You should be more realistic and play up to them, Jill Annette.”

Jill:  “I can accept being judged by them, but I do not play up to anybody!  That is not my style!”

Chair:  “You know what I mean.  You definitely should strengthen your identification with our Department.”

Jill:  “Please tell me how you, our leader, see my research and teaching activities.”

Chair:  “You are funded, actively publishing, and teaching in our large course. Those all are quite good.  But, your professional identity as a Neuroscientist seems questionable.”

Jill:  “Neuroscientists at other schools also publish in Biophysics journals.  I now have had 3 articles published in the #1 journal in that discipline.”

Chair:  “Biophysics is not Neuroscience!  Nobody in our Department has ever published in Biophysics journals.”

Jill:  “Every year I present an abstract with my latest research findings at the annual meeting of the Society for Neuroscience.  That very large Society accepts my research as Neuroscience, and the audience receives my oral presentations with enthusiastic interest.”

Chair:  “Yes, but …  I advise you to publish several articles in Neuroscience journals, in addition to those you send to Biophysics journals.  Please recognize that with this suggestion I am just trying to assist you for your career here.  You will stand a better chance of getting re-appointed if you can accept my advice.”

Jill at once went to talk candidly to some faculty colleagues in several other departments.  She thereby learned much more about what her Boss had just told her.  One senior Full Professor asked her why she didn’t try to transfer into the Biophysics Department.  A female tenured Associate Professor reminded Jill that the amount of money available in federal agencies to fund research grant awards had not increased in recent years despite the larger number of applications received every year; Jill was counseled to view getting her research grant renewed as being something necessary, but inherently uncertain.  Another science faculty member pointed out to her that giving a few lectures for a team-taught course was not exactly any major contribution to teaching.  Jill thus came to recognize that her status as a recent Assistant Professor was not so safe and on track as she had previously believed.

My analysis of Dr. Jill Annette Jones

Although Jill is sincere and is generally doing a good job as a new young university scientist, she only has a limited understanding about how decisions for re-appointments, later promotions, and grant renewals are made.  This young and spirited Assistant Professor indeed is quite naive.  She makes several assumptions that often are not true:(1) everything is on the up and up, (2) research grants are awarded and renewed readily, (3) the hyper-competition for research grant awards will not affect her application for renewal, (4) she now is doing an outstanding job as a member of the science faculty, and (5) the opinions of old faculty do not really matter.  These mistakes undoubtedly will work against success in her career.

In my opinion, Jill Annette definitely is in a weak position and needs to quickly learn to play hardball. Her experienced Chairman is giving her very good advice and instructions!  She clearly needs to strengthen her status and reputation in her department.  If she intends to stay in her present Department, she must keep her critical views about senior faculty colleagues to herself, and become more fully identified as a Neuroscientist.  She also must accept that promotions are not usually given to those who are not considered to be essential and fully committed to being part of the group.  If she cannot make these changes, she will be cast off by her department.

To remedy her weak spots, Jill Annette needs to make a determined effort to:  (1) apply and acquire a second external research grant award, (2) start saying “hello” to those departmental faculty she does not usually converse with, (3) publish a few articles in a Neuroscience journal, in addition to those appearing in Biophysics journals, (4) become even more involved with the Society for Neuroscience (e.g., volunteer to serve on one of their committees), and, (5) suggest and accept taking some more substantial role in the major departmental course.  All of these will help correct her present weak positioning.

Concluding Remarks for Part II

Some young members of modern universities, just like Jill Annette,  are naive about important details of their job situation.  There is not enough instruction given in graduate schools about business and political aspects of being a university scientist.  Conversing with fellow faculty who have recently passed upwards on the career ladder usually reveals important details about unrecognized problems soon to appear.  All new faculty must become more aware about what can happen to them in modern academia.

The fictional stories in Parts I and II are based on real events and real academic faculty I have known.  Sordid attacks by Chairs, Deans, and other Administrators, and traps unseen by new young faculty, are very real.  It is completely essential that young research scientists in universities must become much more knowledgeable about these difficult problems, and learn how to avoid or deal with them effectively.

Some university science departments are headed by a very good, fair, and supportive leader, and provide excellent working environments for their faculty.  The choice of working environment is a most important determinant of the career success and satisfaction for dedicated research scientists.  In my personal opinion, the condition of the working environment is much more important than all other parameters (i.e., geographic location, salary level, availability of tenure slots, laboratory space, amount of start-up funding, size of department, reputation, number of grad students, etc.).

General conclusions for Parts I and II

When confronting any academic official, nothing they say should ever be taken as final.   Each of these officials is strongly obliged to obey their own superior(s), meaning that their announced position or decree can change drastically or even reverse on a moment’s notice.  As the saying goes, there is no honor amongst either thieves or deans.

The situations presented in Parts I and II are better avoided rather than confronted (i.e., select a better working environment).  Fighting these situations directly always is very risky and costs a lot of time, cash, and emotional energy.  It is nothing less than absurd for any faculty scientist to think that either being tenured or having right upon your side, will protect you and assure your being victorious.

At present, the only certain method for preventing this problem, winning any such dispute, and being able to readily find a good new employer is to acquire 2 or more simultaneous research grant awards.  Yes, money is absolutely everything in today’s academia (see:  http://dr-monsrs.net/2014/01/02/why-has-money-become-everything-in-scientific-research/ )!

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                           UNDER THE WEBSITE TITLE

 

YOU WILL NEVER HEAR ABOUT THESE GOOD SCIENTISTS (PART I)!

 

You Will Never Hear About the Life of These Good Scientists! (http://dr-monsrs.net)

You Will Never Hear About the Life of These Good Scientists! (http://dr-monsrs.net)

 

Not all university scientists are so blessed as to acquire multiple research grant awards, have dozens of research students and collaborators working in their laboratory, produce 5-10 new research publications every year, and easily advance right up the career ladder.  Most faculty researchers work hard to achieve some fame while dealing with the large problems involving time, money, and integrity.  To demonstrate the perverse atmosphere now commonly present at too many modern universities, I will describe here some eye-opening stories from the life of two fictitious members of the science faculty at some large state university in the USA.  I will not hold anything back, and do not exaggerate anything.  These stories are very realistic since they are based on actual faculty scientists I have known during my own career as a university scientist; although the stories will be difficult for many adults to believe, these episodes can be considered typical of the undeserved problems facing today’s modern academic scientists.

Joseph H. Smith, Ph.D.

Joe Smith is a 42 year-old tenured Associate Professor in the Department of Chemistry & Biochemistry.  Every year, he gives lectures and teaches laboratories for both the very large undergraduate chemistry course and the biochemistry course; he also presents an advanced graduate course in Environmental Biochemistry.  In addition, Joe serves as Director of Graduate Studies for his department.  He has a research grant from the National Institutes of Health (NIH) that provides salaries for 3 graduate students and one Postdoctoral Research Fellow; he has successfully renewed his grant one time.  Joe’s salary is quite decent and he manages to stay home on weekends to be with his family of 5.  Joe enjoys his research work immensely and is respected by other scientists in his very specialized field.  His departmental colleagues all consider Joe to be a successful scientist, a good teacher, and a friendly associate.  Joe feels confident that he has nearly achieved enough to merit promotion to become a Full Professor.  On the surface nobody has any reason at all to suspect that Joe is not fully successful or is troubled by anything in his career.

Unexpected events occur (i.e., shit does happen!)

One day, to his enormous surprise, Joe is notified by an official letter that his application for the second renewal of his NIH research grant has been approved, but cannot be funded (i.e., his priority score is below the cutoff).  This means that his Postdoc must finish her work, get manuscripts submitted, and leave within 6 more months.  Two of his 3 graduate students are just  starting their training, and so decide to move out of his lab to start working with a different professor.  Joe therefore decides that he now must start working on weekends to compensate for his new much smaller research staff.  He also immediately begins work on a new research grant application; Joe is dismayed to see that there are only 5 more months before the next deadline for submission.  After changing his own work schedule, Joe comes to realize that he now is extraordinarily short on time in his new situation, since he also has upcoming deadlines for revising 2 manuscripts, submitting abstracts for a science meeting, finishing revision of the  Department’s graduate training booklet, mentoring a new Assistant Professor in his Department, and revising all the student handouts for his class lectures for the forthcoming semester.  To put it mildly, Joe now is extremely busy and begins to feel somewhat stressed.

A new character enters this drama

The Chairman of Joe’s department is a famous old chemist who is well-liked by his entire faculty.  The old professor suddenly has a heart attack and must retire.  The search for a replacement succeeds in attracting a middle-aged bright and very ambitious polymer chemist.  This new Chair soon announces that his academic unit now will be renamed as the Department of Chemistry and Polymer Science, and that the biochemistry course now will be listed only by the Department of Biological Science; Joe will continue working in that course despite these changes.  Nobody voices any dissent or concerns about these changes, and Joe initially does not perceive any bad consequences for himself.

During his first interview, the new Chair explains to Joe that the Dean wants him to modernize and rejuvenate this old department, and so he must act vigorously to get this done.  Several distressing pronouncements then are given to Joe: (1) if he cannot win a new grant award within 6 months then Joe’s laboratory assignment will be terminated, (2) Joe will stop directing the graduate student training program, so as to give him more time to work on his new grant applications, and, (3) in recognition of his long service at this university, the new Chair is prepared to write a salutary letter of recommendation on Joe’s behalf should he ever need to apply for a new position elsewhere.  Joe is startled to hear all this, but does not comment.  The new Chair then continues that he wants to make room for several new faculty appointments in polymer chemistry, and so more lab space will soon be needed for those newcomers.  The new Chair ends the conference by smiling and telling Joe, “Please let me know if I can help you with anything!”

Joe initially wonders what all of this means.  After discussions with other faculty in his department, he starts to realize what is going on and exactly what now is happening to him.  Through no fault of his own, Joe the biochemist suddenly has become an “odd man out” in the new regime.  Joe starts to feel increasingly uneasy and worried about his career.

About 6 weeks later, the new Chair calls Joe in for another private conference.  Joe has since gotten advice from several senior faculty members and feels fully prepared to protect his status.  However, he is utterly shocked when his Chair opens by announcing that Joe’s efforts with his new situation are progressing too slowly.  The Chair pauses and leans over to look very closely at Joe, and then continues in a somber voice, “I expect a lot from all my faculty, Joe, and I have been trying to help you.  However, I must tell you that if you cannot be more reasonable and accept all I suggest, then you might be officially investigated for insubordination!  We need to work together here!  I also am wondering if maybe you should now try to find a new job somewhere else?”  The new Chair then again ends the session by smiling and telling Joe, “Please let me know if I can help you with anything!”

Joe becomes very upset.  All his actions to be a good member of the faculty now seem to count for nothing with his new Boss.  Joe cannot believe he really heard that last query and so  replies, “You are very wrong about me!  I have always done a good job here and am a successful faculty member!  I publish my research results in good journals, serve my employer, and receive good reviews from the students for my teaching!   Furthermore, I don’t have to take this crap from you, since I am tenured!  You can’t just push me out!”  The Chair smiles and calmly replies, “Yes indeed, but you now appear to be slowing down and deactivating.  Since I was hired to reform this moribund department, we have no use for slackers or dead wood.  I myself have several big research grants and publish many full articles every year.  I certainly expect my entire faculty to be as productive and successful as I am!  Please be more cooperative, Joe!  You must try harder to do much better!  ”

My analysis of Dr. Joe Smith

Joe Smith certainly is a good person and a good faculty scientist.  He suddenly finds himself put into a very difficult situation in the reorganized department.  He clearly is at a disadvantage in resolving this  problem because he has always been sincere, honorable, and committed; unfortunately for Joe, this type of situation in academia involves another world that is based on power, deceit, personal politics, and aggressive actions.  Thankfully, not all universities have this type of situation occurring with aggressive leaders who are power-hungry and duplicitous, but some most certainly do so.

Won’t academic tenure protect Joe Smith?  Achieving tenured rank in universities very often is taken by the public as the golden protector of an academic career.  In theory,academic tenure protects and enables faculty freedom (i.e., ability to hold and announce any conclusion or belief, no matter how controversial that is).  In practice, tenure only goes so far and really can be only an empty promise.  There are at least a dozen ways that academic tenure can be negated, ignored, superseded, or limited.  Like many other perfectly good academic scientists, Joe Smith learns about this aspect of faculty life only through his actual personal involvement in the new situation described above.

New chairpersons often are given a mandate to reform and improve some dusty university department.  They seem to have a strong general tendency to hire and then favor “my new faculty”, instead of also putting effort into improving the activities of their inherited faculty.  Certainly, some older faculty members with high salaries often are not so modern or productive enough, but that does not mean that those employees should be booted out with no regard for their earlier accomplishments.  Truly good leaders in universities are able to deal with these issues in an effective manner without causing the undeserved problem that Joe Smith innocently ran into.

It is very likely that the new Chair will try to remove Joe in one way or another.  I believe it is unlikely that Joe can win this conflict.  Even if he does manage to retain his position, he will be labelled as a troublemaker, his salary will be reduced, and any of his requests for assistance will be rejected.  A grievance or lawsuit is unexpected to help Joe.  He is too young to take early retirement.  Joe simply is trapped, and I see only 2 possible ways for him to escape doom.  One possibility is that Joe might be able to transfer his status and tenure into the Department of Biological Sciences; his ongoing major teaching role for their large biochemistry course provides strong support justifying moving Joe into that  department.  A second possibility for this innocent scientist is to seek a new position with a different employer where he and his work are not viewed with such hostility; this is not easy to do until he gets funded again, but is the only effective way to totally remove his very negative situation with his current employer.

Concluding remarks for Part I

All readers are urged to accept that the very distressing situation encountered by Joe Smith actually does happen in modern universities.  Yes, university scientists live a dangerous life because unexpected changes can and do occur easily.  Being a good and hard-working research scientist at universities or being tenured does not offer much protection against such unanticipated predicaments.  Acquiring several research grant awards simultaneously now gives more protection to the career of a university scientist than does academic tenure.  I emphasize that Joe Smith is innocent of any wrongdoing, and is simply a victim of perverse circumstances.

This disgusting situation is not unique to Joe Smith or to any of the hundreds of universities in the USA.  In the forthcoming Part II, I will relate a different fictional story that also is strongly based upon real university scientists I have known.

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                            UNDER THE WEBSITE TITLE

 

NEW MULTIMILLION MEGAPRIZES FOR SCIENCE, PART II

 

Please Tell Me, Mirror, Mirror on the Wall, Who is the Very Best Scientist of Them All ?? (http://dr-monsrs.net)

Please Tell Me, Mirror, Mirror on the Wall, Who is the Very Best Scientist of Them All ?? (http://dr-monsrs.net)

 

Part I of this 2-part series presented the origins, characteristics, and benefits of the several new megaprizes for outstanding scientific research (see “New Multimillion Megaprizes for Science, Part I” at:  http://dr-monsrs.net/2014/11/20/new-megaprizes-for-science-part-i/ ).  Part II now examines and discusses several unintended effects that these programs are likely to produce, all of which will hurt science, research, and scientists.

What will be the Effects of the New Giant Cash Prizes on Science and Scientists? 

Nobody anticipated that new rewards for outstanding scientific research would arise with cash rewards of several million dollars to each honoree, but this now is history!  In addition to the several good features of the new award programs by the Breakthrough Prize and the Tang Prize for Biopharmaceutical Science, several major unintended consequences of instituting these multimillion megaprizes will arise.

The first negative effect is to set off an ongoing competition to establish additional new awards having even larger cash prizes.  This is caused by a mentality that mistakenly regards the very largest pot of gold as being the most significant way to honor the very best scientists.

second negative effect will be to induce some university scientists to shift their ongoing career from trying to make important discoveries through experimental research into working to get rich by winning one or more science megaprizes.  The traditional idealism in scientists then goes out the window!  These effects  move along nicely to solidify the increasing commercialization and rising significance of money in modern university science (see “Money Now is Everything in Scientific Research at Universities” ).  I already have presented my view that such a financial situation has very destructive consequences for science and research (see essays on “Introduction to Money in Modern Scientific Research”and “What is the Very Biggest Problem for Science Today?” ).

third negative effect involves public perceptions of science.  Since some of the new megaprizes are presented at an ostentatious extravaganza, the whole spectrum of public opinions is encouraged to shift from having interest and curiosity for research and  technology, to viewing science as an entertainment and research as an amusement.  That will merge with the very common mistaken belief that science has no real importance for daily life (see essay “On the Public Disregard for Science and Research” ).  Scientists then will become part of the entertainment industry, and will be competing for public attention and acclaim with professional athletes, movie stars, opera singers, rock musicians,  political celebrities, new billionaires, etc.  The directors of the new megaprizes evidently do not see the inherent contradiction between trying to increase public appreciation for scientific research, and putting the award ceremonies on global display as some new sort of Hollywood amusement.  Substituting movie stars for royalty just does not do the job!

These misguided features will change the very nature of a research career, solidify the conversion of university science into a business activity, and encourage the public to view science as some kind of nonsense.  These unintended effects will be strongly negative and destructive for science and research, as I have already explained (see my essay on “Could Science and Research Now be Dying?” ).

Some Predicted Bizarre Developments have Become Past History! 

When I first composed this essay, I wrote that this whole new scenario could later become equivalent to the Academy Award ceremonies in the movie industry.  I now read that the 2014/2015 Breakthrough megaprizes just had an Oscar-style private gala for the presentation of its awards by popular celebrities [e.g., 1-3]; my first prediction has happened already!  It seems likely that some new science megaprize soon might replace the traditional medal given to the winners of a Nobel [4] or Kavli [5] Prize with a special very expensive artwork; that could be a bronze bust or an engraved portrait, to be permanently displayed in some science museum.  Further escalation could include an additional part in the award ceremonies featuring a bejewelled crown bestowed onto the head of each winner while they are seated on a throne with lots of flashing lights.  Any of this is ridiculous and inappropriate, sends the wrong message, and demeans science, research, and scientists!

My Suggestions for a New Direction in Science Megaprizes 

The money problem that most university scientists worry about is not the size of their bank account.  Rather, it is the size and continuation of their research grant support.  The new megaprizes do not directly address this very prominent feature of modern science (see“What is the New Main Job of Faculty Scientists Today?” and “Introduction to Money in Modern Scientific Research” ).  It is possible, and even likely, that winners of these megaprizes will spend some portion of their large financial reward to support their own research efforts; that might be used to either supplement their current research grant funds, or to start a new research project that they always wanted to work on, but could not get funded.  My suggestion here is that additional new megaprize programs should directly reward both the personal activities and the science ambitions of the most outstanding research scientists; the new Tang Ptize in Biopharmaceutical Science does exactly that [6].

Why not go even farther?  If some new science prize would offer 3-5 million dollars to be spent exclusively for unrestricted research expenses over an 8-10 year period, then that would be truly meaningful!  Not only would any university scientist be extremely overjoyed and utterly excited to receive that amazing reward, but it also would strongly encourage the progress of science.

Concluding Remarks for Parts I and II

Some features of the multimillion megaprizes for excellence in science certainly are good, but it remains to be seen if these new programs can consistently result in honoring research achievements to the same high level as do the Nobel and Kavli Prizes [4,5].  Their other features seem to me to be very likely to cause further decay and degeneration in science and research.

New entries in the unannounced contest to be the very biggest prize for science all base their claim on the amount of cash offered as a financial reward.  This loud emphasis on dollars is inconsistent with what scientific research is all about.  Any new programs with the bigger or biggest pile of money cheapen science, change the nature of university research in undesirable ways, and, present a false view of science to the public (i.e., it is some kind of Hollywood entertainment).  The wonderful article by Merali [1] presents the candid opinions of several other scientists having similar misgivings to my own about unintended negative effects of the new multimillion megaprizes on science (see: http://nature.com/news/science-prizes-Are-new-nobels-1.13168 ).

References Cited

[1]  Merali, Z., 2013.  Science prizes: The new Nobels.  Nature  498:152-154.  Available on the internet at: http://nature.com/news/science-prizes-Are-new-nobels-1.13168.

[2]  Sample, I., The Guardian, 2012.  Biggest science prize takes web tycoon from social networks to string theory.  Available on the internet at: http://www.theguardian.com/science/2012/jul/31/prize-science-yuri-milner-awards .

[3]  BBC News, Science and Environment, 2014.  ‘Biggest prize in science’ awarded.  Available on the internet at:  http://www.bbc.com/news/science-environment-29987154 .

[4]  Nobel Prizes, 2014.  Nobel Prize facts.  Available on the internet at: http://nobelprize.org/nobel_prizes/facts/ .

[5]  The Kavli Prize, 2014.  About the Kavli Prize.  Available on the internet at: http://www.kavliprize.org/about/ .

]6]  Tang Prize Foundation, 2014.  Introduction, award categories, and 2014 Tang Prize in biopharmaceutical science.  Available on the internet at:  http://www.tang-prize.org/ENG/Publish.aspx .

 

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                            UNDER THE WEBSITE TITLE

 

 

NEW MULTIMILLION MEGAPRIZES FOR SCIENCE, PART I

 

Please Tell Me, Mirror, Mirror on the Wall, Who is the Very Best Scientist of Them All ?? (http://dr-monsrs.net)

Please Tell Me, Mirror, Mirror on the Wall, Who is the Very Best Scientist of Them All ?? (http://dr-monsrs.net)

 

There are a very large number of awards and honors given to research scientists every year!  Most are much smaller than the 2 highest awards for excellence in science, the Nobel Prize [1] and the Kavli Prize [2].  Many of the other honorific prizes are local or narrowly dedicated to a certain subject, activity, location, or aspect of science.  A few of these others have achieved a wonderful record of significance such that they commonly are labelled as being precursors for receiving a Nobel Prize; the Lasker Awards for clinical and basic research in medicine are a very good example of this [3].  Receipt of any award for excellence is a gratifying honor for all the hard work and many challenges to being an outstanding research scientist.

Recently, several large new prizes for outstanding scientists have been initiated, featuring gigantic cash awards.  These major new honors generally are attempts to modernize awards for science, to elevate the public’s low esteem for science, and to bypass some of the restrictions for the Nobel and Kavli Prizes.  Part I of this 2-part series reviews the origin and features of these new megaprizes.  Part II then will evaluate their effects upon science and scientists.

New Award Programs for Outstanding Scientific Research

A very well-written article about the new science megaprizes was written by Zeeya Merali and published last year in Nature [4].  I highly recommend that you read this dramatically informative  report (see: http://nature.com/news/science-prizes-Are-new-nobels-1.13168 ).  Some of the new programs with large awards include the:

(1)    Breakthrough Fundamental Physics Prize (2012), awarded annually to several honorees, with a prize of 3 million dollars to each person [5-8];

(2)    Breakthrough Prize in Life Sciences (2013), issued annually to several awardees, with a prize of 3 million dollars to each one [5-8];

(3)    Breakthrough Prize in Mathematics (2013), awarded annually to several selections with a prize of 3 million dollars to each person [6-8];

(4)    Tang Prize in Biopharmaceutical Science (2013), awarded every 2 years to several honorees, with a prize of up to 1.6 million dollars to each [9]; and,

(5)    Queen Elizabeth Prize for Engineering (2013), aimed to be a Nobel Prize for engineering research and development, with a prize of 1.5 million dollars [5].

All these ‘new Nobels’ now have been actually awarded to very meritorious researchers [6-9] .  Yet other megaprizes undoubtedly will be added to this enlarging line-up.  In the following lists, numbers do not correspond to the same number in the list above.

What are the purposes of these additional awards?  The new Breakthrough Prizes  were established with funds generously donated by Yuri Milner and several other very successful leaders in  Silicon Valley and the internet world [5].  A variety of reasons have been given for the purposes of these new megaprize programs:

(1)   elevate  and encourage more public interest and appreciation for modern science;

(2)   encourage students to pursue a career in science or engineering;

(3)   attract more research funding for certain less prominent disciplines in science;

(4)   stimulate more development of science and research in certain regions of the world;

(5)   bring Nobel-level attention to other dimensions of research (e.g., engineering);

(6)   bring Nobel-level attention to new and novel areas in modern science;

(7)   give acclaim to outstanding younger researchers before they get old or die;

(8)   increase unrestricted research funds for support of outstanding scientists; and,

(9)   remedy problems and flaws in the Nobel Prize award programs.

What prompted individuals to fund the establishment of these mega-awards?  The story about how and why Yuri Milner, who resides in California and Moscow, established the Breakthrough Prizes is indeed fascinating [5].  Milner said that he “wanted to send a message that fundamental science is important”.  Several other prominent leaders in internet companies joined Milner to expand the Breakthrough Prize programs.  A host of possible motivations immediately are suggested for the extreme generosity of these cosponsors, including:

(1)     promotion of ego (e.g., ambition to become a mover and shaker in science);

(2)     self-interest (e.g., buying fame, power, and recognition);

(3)     politics and business interests;

(4)     acquiring publicity for a favorite cause; and,

(5)    inducing changes in the present direction of science and society.

Why are the new science awards so very large?  The cash rewards for the new science megaprizes all are greater than the one million dollar size of the rewards given by the Nobel or Kavli Prizes.  At the very least, this feature draws much more attention and publicity to the new award programs and new awardees.  Some donors to the Breakthrough Prizes have said that they want outstanding scientists to be recognized as corresponding to the ‘superheroes’ in comic books.  In most cases, the several million dollars in prize money awarded to each individual is unrestricted, and theoretically could be used for buying a new house, starting a small business, taking several round-the-world cruises, making large gifts, supplementing available research grants, investing to earn income, etc., etc.  Almost all modern scientists are not used to having such large amounts of personal money available, and are reported by Merali to be hesitant to decide what they will do with their new pile of big prize money [4] .

How do the New Megaprizes Differ from The Nobel and Kavli Prizes? 

Several of the new award programs have been claimed in news accounts as being a greater honor than the Nobel or Kavli  Prizes, largely because they feature a bigger cash reward.  However, just because their prize money indeed is larger, it does not follow that the new awards are more prestigious honors.  It must be recognized that the size of awards for the Nobel and Kavli Prizes already are very large.  To receive even more money moves scientists into today’s realm of star athletes, heads of governments, and entertainment figures.  If that acts to normalize who and what modern society values, then the result could be good.  However, it seems more likely that giant awards will also have some very undesirable consequences; these negative effects will be examined later in Part II.

The several good features of the new megaprize awards modify usual practices for the Nobel Prize by having: open nominations (also used by the Kavli Prize); selection by other scientists or by previous winners; much less secrecy in judging;  an increased number of awardees (e.g., an entire team, rather than just the one director); emphasis on unconventional subjects or special concerns ; and, inclusion of science areas not honored (yet) by the traditional Prizes (e.g., mathematics).

The new Tang Prize in Biopharmaceutical Science is given to outstanding scientists  in this one sub-branch of biological science  [9].  The other large prizes awarded by the Tang Foundation are for projects within Sustainable Development, but outside of science [9].  Headquartered in Taiwan, this megaprize program is notable because part of its large cash reward is given to the individual person being honored, and part is given specifically to support their further experimental research efforts.

Conclusions for Part I

The new multimillion megaprizes for outstanding scientific research serve several useful purposes for science and society: the number of scientists being honored each year is increased, realms of science that are not used by traditional major award programs will be inaugurated and encouraged, and, the financial rewards for the honorees will be substantially elevated.  Subsidiary benefits include providing greater publicity and education  of the public for science and research, bringing recognition to entire teams of scientists working together, and, encouraging more good students to enter a career in science.

Although the intents of these new award programs are very commendable, some of these also seem likely to result unexpectedly in negative outcomes.   The following Part II will discuss the unintended problematic features introduced by the new megaprizes.

References Cited

[1]  Nobel Prizes, 2014.  Nobel Prize facts.  Available on the internet at: http://nobelprize.org/nobel_prizes/facts/ .

[2]  The Kavli Prize, 2014.  About the Kavli Prize.  Available on the internet at: http://www.kavliprize.org/about .

[3]  Lasker Foundation, 2014.  The Lasker Awards overview.  Available on the internet at: http://www.laskerfoundation.org/awards/ .

[4]  Merali, Z., 2013.  Science prizes: The new Nobels.  Nature  498:152-154.  Available on the internet at:  http://www.nature.com/news/science-prizes-Are-new-nobels-1.13168 .

[5]  Sample, I., for The Guardian, 2012.  Biggest science prize takes web tycoon from social networks to string theory.  Available on the internet at: http://www.theguardian.com/science/2012/jul/31/prize-science-yuri-milner-awards.

[6]  Breakthrough Prize, 2014.  Recipients of the 2015 Breakthrough Prizes in Fundamental Physics and Life Sciences announced.  Available on the internet at:  https://breakthroughprize.org/?controller=Page&action=news&news_id=21 .

[7]  Flam, F.D., for Forbes, 2014.  Winners announced for the world’s richest science award: The $3 million Breakthrough Prize.  Available on the internet at:  http://www.forbes.com/sites/fayeflam/2014/11/09/winners-announced-for-the-worlds-richest-science-award-the-3-million-breakthrough-prize/ .

[8]  BBC News, Science and Environment, 2014,  Breakthrough science prize: Big names add glitz to ceremony.  Available on the internet at:  http://www.bbc.com/news/science-environment-29987154 .

[9]  Tang Prize Foundation, 2014.  Introduction, award categories, and 2014 Tang Prize in biopharmaceutical science.  Available on the internet at:  http://www.tang-prize.org/ENG/Publish.aspx .

 

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                            UNDER THE WEBSITE TITLE

 

 

November 14, 2014: SPECIAL NOTICE TO ALL FROM DR.M !

 

No More Spam!November 14, 2014: No More Comments  Means No More Spam!  (http://dr-monsrs.net)

 

My website now has been active for one year!  It is pleasing to note that there have been over 10,000 visitors, and that number still goes up at an increasing rate every week.  I hope that all visitors have found something here that is either new, unusual, disconcerting, surprising, provocative, important, or interesting.  There is a lot more to come!

I have received over 30,000 comments, but at least 99% obviously are spam.  There are always many dozens of identical and very similar comments every single day, coming from several different continents and many different countries; since some messages arrrive within seconds of their duplicates from other addresses, this sounds like a botnet to me.

To solve this problem, I AM HEREBY DISCONTINUING ALL FURTHER COMMENTS.  I do regret the necessity for doing this, but I have no other choice.

 

                                                                                                      Dr.M

 

 

WHAT DOES IT TAKE TO WIN THE BIG PRIZES IN SCIENCE?

 

There are easier ways to acquire a million dollars than winning a Nobel Prize or a Kavli Prize !! (http://dr-monsrs.net)

There are easier ways to acquire a million dollars than winning a Nobel Prize or a Kavli Prize !!     (http://dr-monsrs.net)

 

Most persons regard the Nobel Prize [1] and the Kavli Prize [2] as the very highest award any scientist can earn.  Only a handful of researchers ever win one of these supreme honors.  The 2014 awards for both Prizes recently were announced (see “The 2014 Nobel Prizes in Science are Announced!” and “The Kavli Prizes are Awarded for 2014!” ); an introductory background to these most prestigious awards was given in an earlier article (see “How do Research Scientists Become Very Famous?” ).  This essay looks at the characteristics of the 9 new awardees for each Prize, and discusses what conclusions can be drawn about which capabilities and activities let a scientist achieve such high renown.

Key Features of the Nobel Prize and the Kavli Prize

Both Prizes aim to honor the most outstanding research scientists, but they also have a few significant differences.  The Novel Prize [1] was first awarded over a century ago, and uses a closed nomination process.  The Kavli Prize [2] is of very recent origin, and uses open nominations. The large financial reward offered to honorees by both Prizes is similar (i.e., about one million dollars for the prize in each topical area is divided between the several Laureates for any year.  Both Prizes feature week-long special festivities that include formal presentation of the awards to the Laureates by royalty from Sweden or Norway.

The Nobel or Kavli Prizes have prominently different coverages.  The Nobel Prize deals with areas in all fields of science (biology, chemistry, and physics), but the Kavli Prize is restricted to only consider astrophysics, nanoscience, and neuroscience.  Selection of the Nobel Prize awardees therefore must evaluate many more candidate scientists annually.  For example, Nobel Laureates who surpass others in achieving supreme excellence of research in their topical area (e.g., mammalian endocrinology) also must have outscored those who have made an equivalent high level of accomplishments in many other subfields of biology.  That differs from the Kavli Laureates, who only have to surpass other scientists within their own topical discipline (e.g., nanoscience).

Characteristics of the 2014 Laureates

All the new awardees for both Prizes [3,4] are dedicated and distinctive individuals researching for many years.  These scientists come from many different countries, reflecting the global nature of science.  All honorees are at least in their middle age, and the senior honorees are still conducting further investigations.  Both males and females are being honored as this year’s Laureates for both Prizes.  The greater number of male honorees reflects the larger number of male scientists currently conducting research in universities; since there now are more females than males studying in graduate school, this will lead to many more female honorees in the future. In some cases research work of the new Laureates already has led to commercial  products put into widespread daily use (e.g., light bulbs with emitting diodes that produce white light).

The subjects the 2014 awardees work on are diverse, but 2 areas of study, memory in the brain, and, theoretical and applied optics for imaging, are common to both Prizes this year.  Two of the new Laureates, Prof. John O’Keefe and Prof. Stefan W. Hell, even won both Prizes [3,4].  These 2 award programs thus have consistent criteria for selecting topical areas and the awardees.  This convergence of judgment counters the common criticism of the Nobel Prizes for not being appreciative of modern and novel subject areas.   This also suggests that producing dramatic new findings and working in a hot area having widespread investigations by other scientists can increase the chance of winning these Prizes.

One might think that the attention of the Kavli Prizes given to very large and modern topical areas would produce more awards to younger scientists.  The 2014 awards show no evidence for this presumption; most new Kavli Laureates have researched for decades.  This is easier to understand if one realizes that progress in scientific research flows and advances in a progression, such that supreme accomplishments often result from important contributions and extensions made by many other scientists after the major initial  discovery by one individual.

Both the Nobel and Kavli Prizes typically select to honor 2-3 different individual scientists working in the same topical area.  All 3 usually are well-known to each other, but they need not be direct collaborators.  The policy of selecting only a few awardees for each topical area also means that one research scientist doing very meritorious work as an individual in an area where few others are researching might become quite famous, but does not have the momentum needed to win one of these Prizes. If we look at the early history of the Nobel Prize in science, some single Laureates are found (see complete list of all Nobel Laureates on the internet at:  http://www.nobelprize.org/nobel_prizes/facts/ ).

Common Questions about the Nobel and Kavli Prizes

Non-scientists often wonder if earning one of these supreme awards is an outcome that can be planned?  My impression is that the glory of winning a Nobel or Kavli Prize mostly isnot directly sought and usually is a dramatic surprise to the awardees.  The Laureates, just like most other research scientists, simply strive to do meritorious investigations, find answers to important research questions, get their research grants renewed, and thereby become famous; both the most famous researchers and all other scientists are very aware that only a small handful of scientists can ever win either Prize.  Characteristics of the 2014 Laureates suggest that one promising strategy for success is to try to obtain breakthrough results in an area of intense importance, and to stimulate an increasing number of other scientists and engineers to undertake research studies in the same topical area.

Another common question is why there never are more than 3 awardees for the Prize in each topical area?  The answer is that the administrators of the Nobel and Kavli Prizes impose this restriction.  That stringent limitation certainly elevates the prestigious character of these awards.  Sometimes this same policy unfortunately causes awarding one Prize to only half of a 2-person team, even where both are widely believed by many other scientists to have made equivalent contributions and to be very equally meritorious.

A frequent criticism about the Nobel Prizes is that they mostly honor only very senior scientists.  Nevertheless, the youngest winner of a Nobel Prize in science (1915), Lawrence Bragg, was only 25 years old [5].  The limited number of Nobel or Kavli Prizes awarded also produces the result that some very meritorious senior scientists might die before any award is bestowed.  It is not publically known whether the 2-3 awardees or the topical area is selected first for either Prize

A substantial number of Nobel Prizes in science have been awarded for research on certain subjects, e.g., cholesterol, crystallography, and subatomic particles.  Why is this?  These areas and methods influence multiple other research subjects, and so have a wider impact and importance than do many others; as one example, research on cholesterol involves biochemistry, biology, biophysics, clinical medicine, methodology, pathology, pharmacology, and physiology.

Concluding Remarks

Looking at the 2014 version of the Nobel and Kavli Prizes, I can draw 5 general conclusions: (1) one individual scientist no longer is selected as the exclusive winner, and no more than 3 persons are honored with an annual  Prize in any topical area, (2) more senior scientists than younger workers are selected for these awards, and no Prize can be given to deceased scientists, (3) basic scientific research can be honored particularly where applied science and engineering developments have subsequently amplified and solidified these large advances, (4) theoretical science can be honored where this is modified and subsequently extended by other researchers, such that the theory becomes consistent with ongoing studies and is widely applicable, and (5) there is no general formula assuring earning the award of either supreme honor, and thus a certain amount of good luck also is needed to become a Laureate.

Several new types of science awards with gigantic c ash prizes recently have been established.  Their nature and distinctions will be described and discussed in the subsequent article.

[1] Nobel Prizes, 2014.  Nobel Prize facts.  Available on the internet at: http://www.nobelprize.org/nobel_prizes/facts/ .

[2] The Kavli Prize, 2014.   About the (Kavli) Prize.   Available on the internet at:  http://www.kavliprize.org/about / .

[3] Nobel Prizes, 2014.  Nobel Prizes 2014.  Available on the internet at:   http://www.nobelprize.org/nobel_prizes/lists/year/index.html .

[4] Kavli Foundation, 2014.  The Kavli Prize 2014 Laureates.  Available on internet at:
http://www.kavlifoundation.org/2014-kavli-prize.

[5] Nobel Prizes, 2014.  Nobel Laureates by age.  Available on the internet at:  http://www.nobelprize.org/nobel_prizes/lists/age.html .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                            UNDER THE WEBSITE TITLE

 

 

THE KAVLI PRIZES ARE AWARDED FOR 2014

Notable quotations by FRED KAVLI about scientific research. Obtained from http:www.youtube.com/watch?v=ch6yMD4JGCo , and from http://www/kavliprize.org/about/fred-kavli ,

Notable quotations by FRED KAVLI about scientific research.  Obtained from
http:www.youtube.com/watch?v=ch6yMD4JGCo , and from http://www/kavliprize.org/about/fred-kavli .

 

The Kavli Prizes are bestowed every 2 years for the most outstanding research within 3 of the largest branches of modern science: astrophysicsnanoscience, and neuroscience [1].  These international Prizes are made possible by the late Fred Kavli, who was born in Norway and later moved to the USA, held a degree in physics, and was a very successful industrialist; he generously donated funds to establish this new award program.  Kavli Prizes were first awarded in 2008, and are regarded as having the same very high prestige as the Nobel Prizes in science [2].  Nevertheless, the Kavli Prizes have several distinctive differences from the Nobel Prizes, particularly for their focus on only 3 topical areas in modern science, their open nomination process, and their recent origin in the 21st century.

I recently covered the announcement of the 2014 awardees of the Nobel Prizes in science (see “The 2014 Nobel Prizes in Science are Announced” ).  The honorees for the 2014 Kavli Prizes were announced in late May, and their awards were presented in September as part of the extensive Kavli Prize Week festivities in Oslo (Norway).  In this article I will first give a short description about Fred Kavli and the nature of the Kavli Prizes, and then will offer an overview of the 2014 Kavli Prize awardees and their seminal research discoveries.  Each segment is followed by sources for additional information that are available on the internet.

[1]  The Kavli Prize, 2014.  Kavli Foundation – Science prizes for the future.  Available on the internet at:  http://www.kavliprize.org/about .

[2]  Nobel Prizes, 2014.  Nobel Prize facts.  Available on the internet at:  http://www.nobelprize.org/nobel_prizes/facts/ .

Fred Kavli and the Kavli Prizes

Fred Kavli was an entrepreneur, a vigorous worker and leader in industry, an outspoken advocate for experimental research, a philanthropist, an innovator, and an amazing benefactor of science.  After he sold his very successful business, he established the Kavli Foundation.  This works to “support scientific research aimed at improving the quality of life for people around the world”.  It does this through establishing research institutes at universities in many different countries, endowing professorial chairs at universities, sponsoring science symposia and workshops, engaging the public in science via education, promoting scientists’ communications, and, rewarding excellence in science journalism.  As part of these programs, the Kavli Prizes were established by the Foundation in associatiion with The Norwegian Academy of Science and Letters, and The Norwegian Ministry of Education and Research.

The Kavli Prizes are intended to honor scientists “for making seminal advances in 3 research areas: astrophysics, nanoscience, and neuroscience”.  Fred Kavli elected to emphasize research areas representing the largest subjects (astrophysics studies the entire universe), the smallest subjects (nanoscience studies structure and function at the level of atoms and molecules), and the most complex subjects (neuroscientists can study normal and pathological functioning of the human brain).  Fred Kavli was particularly enthusiastic about supporting basic scientific research because he correctly viewed that as the generator of subsequent developments providing practical benefits for humanity.   He also recognized that experimental science is not always predictable, and that practical consequences often arise only many years after a discovery in basic research.  Clearly, all of the programs sponsored by Fred Kavli are having and will continue to have a very beneficial impact on science in the modern world.

The selection of Kavli Prize Laureates is made by international committees of distinguished scientists recommended by several national academies of science.  The awards are announced by the Norwegian Academy of Science and Letters as part of the opening events at the annual World Science Festival.  During the Kavli Prize Week in Oslo, each Laureate receives a gold medal, a special scroll, and a large financial award, from a member of the royal family of Norway.

Very good information about Fred Kavli (1927 – 2013) is given on the internet by the Kavli Prize website at:  http://www.kavliprize.org/about/fred-kavli .  A glimpse into Kavli’s life, personality, and hopes for science progress is offered by several good short videos on the internet: (1) “WSF (World Science Festival) Remembers Fred Kavli (1927-2013), Giant of Science Philanthropy” at:   http://www.youtube.com/watch?v=ch6yMD4JGCc  (wonderful!), and, (2) “Basic Research’s Generous Benefactor” at:   http://www.youtube.com/watch?v=lYkvP_HKZZY  (very highly recommended!).  The organization, purpose, and history of the Kavli Prizes and the Kavli Foundation are available at: http://www.kavliprize.org/about/guidelines ,  and at: http://www.kavliprize.org/about/kavli-foundation .

2014 Kavli Prize in Astrophysics

The 2014 Kavli Prize iin Astrop hysics was awarded jointly to 3 professors working with theoretical physics: Alan H. Guth, Ph.D. (Massachusetts Institute of Technology, USA),Andrei D. Linde, Ph.D. (Stanford University, USA), and Alexei A. Starobinsky, Ph.D.(Landau Institute for Theoretical Physics, Russian Academy of Science, Russia).  These  awards are made for their independent development of the modern theory of ‘cosmic inflation’, which proposes that the there was a very brief yet gigantic expansion of our universe shortly after its initial formation; this dramatic new theory now has been supported by some data from space probes and caused large changes in current theoretical concepts for the evolution of the cosmos.

Further information about the 2014 Kavli Prize in Astrophysics and these Laureates is available on the internet at:  http://www.kavliprize.org/prizes-and-laureates/prizes/2014-kavli-prize-laureates-astrophysics .

2014 Kavli Prize in Nanoscience

The 2014 Kavli Prize in Nanoscience was awarded to 3 university professors:  Thomas W. Ebbeson, Ph.D. (University of Strasbourg, France), Stefan W. Hell, Ph.D. (Max-Planck-Institute for Biophysical Chemistry}, and John B. Pendry, Ph.D. (Imperial College London, U.K.).  Each independently researched different aspects of basic and applied optics needed to advance the resolution level of light microscopy much beyond what had been believed to be possible; their research findings led to the development of nano-optics and the transformation of light microscopy into nanoscopy.  The new ability of light microscopy to now see objects at the nanoscale dimension greatly expands and improves its utility for nanoscience research (i.e., nanobiology, nanochemistry, nanomedicine, and nanophysics).  It is interesting to note that Prof Hell also will receive a 2014 Nobel Prize in recognition of his outstanding research.

Further information about the 2014 Kavli Prize in Nanoscience and these Laureates is available on the internet at:  http://www.kavliprize.org/prizes-and-laureates/prizes/2014-kavli-prize-laureates-nanoscience .

2014 Kavli Prize in Neuroscience

The 2014 Kavli Prize in Neuroscience was awarded jointly to 3 professors:  Brenda Milner, Ph.D. (Montreal Neurological Institute, McGill University, Canada), John O’Keefe, Ph.D.(University College London, U.K.), and Marcus E. Raichle, Ph.D. (Washington University School of Medicine).  Their different research investigations revealed a cellular and networking basis for memory and cognition in the brain; their experimental findings resulted from the development and use of new technologies for brain research, and led to establishment of the modern field of ‘cognitive neuroscience’.  The resulting new knowledge about memory and cognition advances understanding of human diseases causing memory loss and dementia (e.g., Alzheimer ’s disease).  It is of special interest to note that Prof. O’Keefe also will receive a 2014 Nobel Prize in Physiology or Medicine, in recognitionof his very significant brain research.

Further information about the 2014 Kavli Prize in Neiuroscience and these Laureates is available on the internet at:  http://www.kavliprize.org/prizes-and-laureates/prizes/2014-kavli-prize-laureates-neuroscience .  A discussion with all 3 of these 2014 Laureates, which will be readily understood and especially interesting for both non-scientists and professional scientists, is available on the internet at:  http://www.kavliprize.org/events-and-features/2014-kavli-prize-neuroscience-discussion-lauereates .

Concluding Remarks

It is indeed very striking that several honorees for the different 2014 Kavli Prizes also have been selected for the 2014 Nobel Prizes (see:http://www.nobelprize.org/nobel_prizes/lists/year/index.html?year=2014&images=yes ).  That convergence of judgment emphasizes that the choices of which scientists have made sufficiently important advances in research are made with consistency by the different selection committees for these 2 supreme science awards.  Since Fred Kavli elected to emphasize work in several of the hottest research areas in modern science, this convergence of awards can be expected to continue in the future.

There can be no doubt that all awardees selected for the 2014 awards of Kavli Prizes are very outstanding investigators who have made remarkable progress in scientific research.  Everyone in the world should appreciate and celebrate the hard work and research success of the 2014 Kavli Laureates.

 

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                            UNDER THE WEBSITE TITLE

 

 

THE 2014 NOBEL PRIZES IN SCIENCE ARE ANNOUNCED!

Adjusted Photographic Portrait of ALFRED NOBEL in the late 1800's Taken by Gösta Florman. Common Domain Image obtained from Wikimedia Commons at the Wikipedia website: http://en.wikipedia.org/wiki/File:Alfred Nobel_adjusted.jpg .

Adjusted Photographic Portrait of ALFRED NOBEL in the late 1800′s.  Recorded  by Gösta Florman. Common domain image obtained from Wikimedia Commons at the Wikipedia website (http://en.wikipedia.org/wiki/File:Alfred Nobel_adjusted.jpg) .

 

The Nobel Institute has just announced the awardees of this year’s Nobel Prizes in science.  As always, the scientists selected are unquestionably outstanding researchers and contributors to the progress of science.  The Nobel Prize [1] and the Kavli Prize [2] are the very highest honor any scientist can earn.

In this article, I will first present a short introduction to the Nobel Prizes in science, and then I will very briefly summarize the research work of the new 2014 honorees.  For each topic I also will offer some good resources where more information can be found on the internet.

[1]  Nobel Prizes, 2014.  Nobel Prize facts.  Available on the internet at:http://www.nobelprize.org/nobel_prizes/facts/ .

[2]  The Kavli Prize, 2014.  The Kavli Prize – Science prizes for the future.  Available on the internet at:  http://www.kavliprize.org/about .

The Nobel Prizes in Science

Alfred Nobel (1833 – 1896) is famed as the inventor of dynamite and other explosives, and as a very successful industrialist.  Surprisingly, this Swede had very limited formal schooling.  At his death, he held over 350 patents.  Nobel left much of his substantial fortune to establish the honorific prizes that bear his name; his will directed that the awards in science should be for “those who during the preceding year have conferred the greatest benefit on mankind”.  The first Nobel Prize was awarded in 1901.

At present, separate Prizes are devoted to all of the 3 major branches of science, and also to literature, economic sciences, and peace.  The selection of honorees (Nobel Laureates) is administered by The Royal Swedish Academy of Sciences,  The Nobel Assembly of the Karolinska Institute (Norway), and the Nobel Foundation.  The Nobel Prizes in science are presented by the royal ruler of Sweden during the large celebration of “Nobel Week” in December; each new Laureate gives a Nobel Lecture and receives a Nobel Medal, a Nobel Diploma, and a document stating their financial award.  As many Laureates have said, receiving a Nobel Prize is a spectacular once-in-a-lifetime experience; nevertheless, a few scientists actually have won a second Nobel Prize.

The official history of Alfred Nobel is presented at: http://www.nobelprize.org/alfred_nobel/ .  General information about the Nobel Prizes, Nobel Prize Week, Nobel Laureates, and the topics for recent awards are presented at: http://www.nobelprize.org/ .  A listing of all the awardees for each Prize is given at: http://www.nobelprize.org/nobel_prizes/facts/ .  Many good materials for science education and modern videos about the Nobel Prize awardees are available on that site.   First, you are required to select one item from very extensive lists of all the yearly Nobel Prizes and Laureates , and then to select one year; lastly, indicate whether you want to see a Nobel Lecture, an  Interview with a specific Laureate (highly recommended!), or a Commentary.

2014 Nobel Prize in Physics

The 2014 Nobel Prize in Physcs is awarded jointly to 3 professors : Isamu Akasaki, Ph.D.(Meijo University and Nagoya University, Japan), Hiroshi Amano, Ph.D. (Nagoya University, Japan), and, Shuji Nakamura, Ph.D. (University of California, Santa Barbara, USA).  Their determined and detailed research investigations over several decades finally led to several successful ways to create emission of blue light from light-emitting diodes (LEDs).  That invention then led to the long-sought development of LEDs that emit white light.  There now is worldwide installation of commercial white LEDs as replacements for standard light bulbs, since these new LEDs are brighter, less costly, longer lasting, non-polluting, and  much more efficient.  These practical improvements for everyday life came about through the classical sequence of basic research, applied research, and engineering developments, and, will benefit all humans.

Further information about this 2014 Nobel Prize in Physics is available on the internet at: http://www.nobelprize.org/nobel_prizes/physics/laureates/2014/press.html , and at:
http://www.nature.com/news/nobel-for-blue-led-s-that-revolutionized-lighting-1.16092 .

2014 Nobel Prize in Chemistry

The 2014 Nobel Prize in Chemistry is awarded jointly to 3 academic scientists: Eric Betzig, Ph.D. (Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA),Stefan W. Hell, Ph.D. (Max Planck Institute for Biophysical Chemistry, Göttingen, and  German Cancer Research Center, Hdeidelberg, Germany), and William E. Moerner, Ph.D.(Professorships in Chemistry and Applied Physics, Stanford University, Stanford, California, USA).  Working independently, each contributed to enable the difficult technological breakthrough that permits light microscopy to become “nanoscopy” or “super-resolution light microscopy.  Much smaller details now can be seen than was previously possible with standard light microscopes.  This great advance in research instrumentation even allows detection of location and movements of individual protein molecules within living cells.

Further information about this 2014 Nobel Prize in Chemistry is available on the internet at:http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2014/popular-chemistryprize2014.pdf , and at: http://www.nature.com/news/nobel-for-microscopy-that-reveals-inner-world-of-cells-1.16097 .

2014 Nobel Prize in Physiology or Medicine

The 2014 Nobel Prize in Physiology or Medicine is awarded jointly to 3 university scientists:John O’Keefe, Ph.D. (Sainsbury Wellcome Centre in Neural Circuits and Behaviour, University College London, U.K.), May-Britt Moser, Ph.D. (Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway), and Edward I. Moser, Ph.D. (Kavli Institute for Systems Neuroscience, University of Science and Technology, Trondheim, Norway).  Their neuroscience research involves experimental studies of the brain, and seeks to define how place and navigation in the spatial environment are sensed, analyzed, and remembered.  Spatial memory is frequently affected in patients with Alzheimer’s disease.  Their investigations show that this sensing of spatial positioning occurs in certain cells within 2 brain locations; these cells talk to each other and together form a map of spatial locations that is recorded in the memory.

Further information about this 2014 Nobel Prize in Physiology or Medicine is available on the internet at:http://www.nobelprize.org/nobel_prizes/medicine/laureates/2014/press.html, and at:
http://www.nature.com/news/nobel-prize-for-decoding-brain=s-sense-of-place-1.16093 .

Concluding Remarks

The Nobel Prizes represent recognition that science, research, and scientists are producing new achievements that benefit all of us in our daily life.  Ordinary adults who are not scientists should be generally aware of the new Nobel Prize awards, and can point these out to any of their children showing interests in science.  For non-scientists, knowing the names of the Laureates is not important, but the nature and meaning of the research advances meriting these awards are significant (i.e., How are the results important to me and others?).  The Nobel Prizes are a recognition of preeminent progress in global science, and everyone is invited to join this celebration!

Professional scientists should be particularly aware of the new Nobel Laureates in their branch of science.  Only a small handful of scientists ever win a Nobel Prize, and some who clearly deserve one are passed over.  All research scientists should join in celebrating the wonderful achievements of the 2014 Laureates, and also should celebrate their own less-recognized contributions to the progress of science!

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                            UNDER THE WEBSITE TITLE

 

 

SCIENTISTS TELL US ABOUT THEIR LIFE AND WORK, PART 8

 

Quotations by Prof. Nadrian (Ned) C. Seeman (from pages 20 and 23 of his Living History essay in ACA RefleXions, American Crystallographic Association, Summer 2014, Number 2, pages 19-23)

Quotations by Prof. Nadrian (Ned) C. Seeman (from pages 20 and 23 of his Living History essay in ACA RefleXions, American Crystallographic Association, Summer 2014, Number 2, pages 19-23)

 

In this series, I am recommending to you a few life stories about real scientists.  I prefer to let these scientists tell their own stories where possible.  Autobiographical accounts are interesting and entertaining for both non-scientists and other scientists.  My selections here mostly involve scientists I either know personally or at least know about.  If further materials like this are needed, they can be obtained readily on the internet or with input from librarians at public or university libraries, science teachers, and other scientists.

In the preceding segment of this series, the story of a very celebrated basic research scientist working on Protein Dynamics in Cell Biology was recommended (see “Scientists Tell Us About Their Life and Work, Part 7”).  Part 8 presents the life story of a research scientist who dreamed up and established an amazingly novel new branch of chemical engineering based upon the well-known double-helix of DNA.

Part 8 Recommendations:  NEW NANOSTRUCTURES BASED ON DNA

Prof. Nadrian (Ned) C. Seeman (1945 – present) originated several new fields of science and engineering: DNA Nanotechnology, DNA-Based Crystallography, and DNA-Based Computation.  His very creative investigations and innovative new concepts for “Structural DNA Technology” often were developed for practical applications (e.g., better production of highly ordered macromolecular crystals, nanocomputation, nano-electronics, nanomedicine, and nanorobotics); thus, he is both a basic and an applied researcher.  All of his dramatic innovations and unusual research topics are based on the structure and properties of DNA.  Numerous other research labs around the world now also are working with DNA-based nanostructures.

DNA is known to most as the double-stranded genetic material making up chromosomes.  The binding between each of the 2 associated strands takes place by specific pairing between their individual nucleotide bases; this binding is very specific and fairly strong.  In the laboratory, segments of synthetic single-stranded DNA can be  hybridized (reassociated) to form new double-stranded DNA; branch points and unpaired base sequences at the termini can be produced as desired, and are key points of technology for using DNA to produce new nanostructures.  Seeman developed and used these characteristic features from the early 1980’s to form self-assembled DNA polygons, and, 2-D and 3-D lattices; subsequently, he went on to invent nanomechanical devices (e.g., synthetic computers, robots, translators, and walkers), and other nanostructures (e.g., superstructures of DNA associated with other species, and nano-assembly lines).  In 2004-5, he was the founding president of a new professional science association, the International Society for Nanoscale Science, Computation and Engineering (see: http://isnsce.org/ ).

Seeman’s unconventional research involves unique combinations of biochemistry, biophysics, chemical engineering, computer science, crystallography, nanoscience and nanotechnology, structural biology, and, thermodynamics.  His creative ideas and amazing lab studies for making new nanostructures involve both theory and practice, and are also being used to advance scientific knowledge and understanding about the biophysics of intermediates in the recombination of chromosomal DNA during its replication.

Prof. Seeman chairs the Department of Chemistry at New York University.  He has received many honors for his pioneering research, including the Sidhu Award from the Pittsburg Diffraction Society (1974), a Research Career Development Award from the National Institutes of Health (1982), the Science and Technology Award from Popular Science Magazine (1993), the Feynman Prize in Nanotechnology (1995), and the Nichols Medal from the NY Section of the American Chemical Society (2008).  He is an elected member of the Norwegian Academy of Science and Letters, a Fellow of the Royal Society of Chemistry (U.K.), and holds an Einstein Professorship from the Chinese Academy of Sciences.  In 2010, Prof Seeman and Prof. Donald Eigler (IBM Almaden Research Center, San Jose, California) were jointly honored as awardees of the Kavli Prize in Nanoscience [1]; also see the photo of these 2 awardees receiving their Kavli Prize from H. M. King Harald of Norway [2].  Seeman is without question an embodiment of what Dr.M wrote about in an earlier essay on the significance of curiosity, creativity, inventiveness, and individualism in science (see:  http://dr-monsrs.net/2014/02/25/curiosity-creativity-inventiveness-and-individualism-in-science/ ).

[1]  Kavli Foundation, 2010.  2010 Kavli Prize in Nanoscience.  Available on the internet at:
http://www.kavlifoundation.org/2010-nanoscience-citation .

[2]   Kavli Foundation, 2010.  The Kavli Prize in Nanoscience (2010).  Available on the internet at:  http://registration.kavliprize.org/seksjon/vis.html?tid=27454 .

Lots of interesting information about Prof. Seeman is displayed on his laboratory home page (see: http://seemanlab4.chem.nyu.edu/ ).  My recommendations (below) start with Seeman’s own explanation of his research in DNA Nanotechnology, as written for non-scientists (1A).  For working scientists, his review article provides a stimulating overview (1B).  The second recommendation (2) is an official summary of why Seeman and Eigler were selected for the Kavli Prize in Nanoscience in 2010.  The third item is Prof. Seeman’s personal description about his own career in science (3), and is filled with stories and anecdotes about both his difficulties and his triumphs; all readers will find this to be a very fascinating account.  Dr.M considers that essay to be extraordinary, since it is probably the most unusually forthright and outspoken piece ever authored by a modern scientist.

(1A)  Seeman, N. C., 2004.  Nanotechnology and the double helix (preview).  Scientific American  290:64-75.  Available on the internet at:
 http://www.scientificamerican.com/article/nanotechnology-and-the-double-helix .

(1B)  Seeman, N. C., 2010.  Nanomaterials based on DNA.  Annual Review of Biochemistry 79:65-87.  Available on the internet at:
http://www.annualreviews.org/doi/pdf/10.1146/annurev-biochem-060308-102244 .

(2)  Kavli Foundation, 2010.  2010 Nanoscience Prize explanatory notes.  Available on the internet at:
http://www.kavlifoundation.org/2010-nanoscience-prize-explanatory-notes .

(3)  Seeman, N. C., 2014.  The crystallographic roots of DNA nanotechnology.  ACA RefleXions, American Crystallographic Association, Number 2, Summer 2014, pages 19-23.  Available on the internet at:
http://www.amercrystalassn.org .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                            UNDER THE WEBSITE TITLE

 

SCIENTISTS TELL US ABOUT THEIR LIFE AND WORK, PART 7

 

Quotation from Prof. David D. Sabatini (from 2005 Annual Review of Cell and Developmental Biology, volume 21, pages 1-33)

Quotation from Prof. David D. Sabatini (from 2005 Annual Review of Cell and Developmental Biology, volume 21, pages 1-33)

 

In this series, I am recommending to you a few life stories about real scientists.  I prefer to let these scientists tell their own stories where possible.  Autobiographical accounts are interesting and entertaining for both non-scientists and other scientists.  My selections here mostly involve scientists I either know personally or at least know about.  If further materials like this are needed, they can be obtained readily on the internet or with input from librarians at public or university libraries, science teachers, and other scientists.

In the preceding segment of this series, the story of a very determined clinical research scientist working in Transplant Surgery and Immunology was recommended (see  http://dr-monsrs.net/2014/09/17/scientists-tell-us-about-their-life-and-work-part-6/ ).  Part 7 presents the activities of a very celebrated cell biologist whose research succeeded in untangling and explaining the extensive subcellular and molecular interactions occuring during the synthesis, trafficking, sorting, and secretion of proteins by our cells.

Part 7 Recommendations:  PROTEIN DYNAMICS IN CELL BIOLOGY

David D. Sabatini has led modern research efforts to understand the very complex interactions taking place with the dynamics of proteins during their biosynthesis, co- and post-translational processing, sorting, and, secretion.  After receiving his M.D. degree in Argentina he came to the USA and earned a Ph.D. in 1966 at The Rockefeller University (New York).  His training and early research studies flourished at the very special research center established at Rockefeller by several founding fathers of cell biology (Profs. George Palade [1], Philip Siekevitz [2], and Keith R. Porter (see Part 2 in this series at:   http://dr-monsrs.net/2014/08/07/scientists-tell-us-about-their-life-and-work-part-2/ )).   Much of Sabatini’s reseach efforts have centered on ribosomes, the ribonucleoprotein assemblies that synthesize new proteins inside cells; his lab investigations led to breakthrough findings about the molecular mechanisms directing newly-synthesized proteins to their different intracellular or extracellular target destinations.

Prof. Sabatini is especially renowned for co-discovering the signal hypothesis in collaboration with Prof. Günter Blobel (Rockefeller University).  This concept nicely explains the dramatic initial passage of all secreted proteins across the membrane (translocation) of endoplasmic reticulum via the presence of a short initial segment of aminoacids that is absent from non-secreted proteins retained for intracellular usage; this segment is termed ‘the signal for secretion’.  Subsequent research studies in other labs added to this hypothesis by discovering additional signals that directed different  newly synthsized proteins to other destinations inside cells;  the generalized signal hypothesis now explains much of the intracellular trafficking of proteins.

By his nature, Prof. Sabatini always is intensely knowledgeable and enthusiastic about research questions and controversies in cell biology.  His numerous research publications always feature analysis of very detailed experimental results where data and interpretations are elegantly used to form groundbreaking conclusions.  Sabatini led the Department of Cell Biology at the New York University School of Medicine since 1972, and developed that into a leading academic center for modern teaching, scholarship, and research in cell and molecular biology.  He has served as the elected President of the Americal Society for Cell Biology (1978-79), and was awarded the E. B. Wilson Medal jointly with Prof. Blobel by that science society (1986).  In 2003, he received  France’s highest honor in science, the Grande Medaille d’Or (Grand Gold Medal).  Prof. Sabatini has merited membership in the USA National Academy of Sciences (1985), the American Philosophical Society, and the National Institute of Medicine (2000).   His celebrated research career exemplifies the important contributions that scientists from many other countries have made to USA science.   Prof. Sabatini recently retired, but his family name will continue to appear on many new research publications since several of his children have become very productive doctoral researchers in bioscience.

[1]  Farquhar, M.G., 2012.  A man for all seasons: Reflections on the life and legacy of George Palade.  Annual Review of Cell and Developmental Biology28:1-28.  Available on the internet at:  http://www.annualreviews.org/doi/pdf/10.1146/annurev-cellbio-101011-155813 .

[2]  Sabatini, D. D., 2010.  Philip Siekevitz: Bridging biochemistry and cell biology.  The Journal of Cell Biology, 189:3-5.  Available on the internet at:  http://jcb.rupress.org/content/189/1/3.full.pdf .

All 3 of my recommendations (below) provide exciting glimpses into real scientists in action. The first recommendation (1) is a short video presentation by Prof. Sabatini at the conclusion of the special Sabatini Symposium held in 2011 to honor him upon the occasion of retirement.  My second recommendation (2) is a superb autobiography giving many interesting stories about his life and career as a research scientist.  Non-scientist visitors are urged to read (only) pages 5-11; these present a fascinating account of his exciting adventures as a young scientist researching first with Barrnett at Yale University, and then with Palade and Siekevitz at The Rockefeller.  Doctoral scientists should read all of this very personal account.  The third selection (3) is a brief obituary he wrote about his teacher and mentor, Prof. Siekevitz; the stories told here illustrate the importance of scientists as people, and show that some of the controversial items discussed on Dr.M’s website also are of concern to other scientists.

(1)    Sabatini, D. D., 2011.  Speech at awards ceremony and closing.  Sabatini Symposium, Dec. 2, 2011, New York University School of Medicine.  Available on the internet at:  http://sabatini.med.nyu.edu/videos/awards-ceremony-and-closing .

(2)     Sabatini, D.D., 2005.  In awe of subcellular complexity: 50 years of trespassing boundaries within the cell.  Annual Review of Cell and Developmental Biology21:1-33.  Available on the internet at:
http://www.annualreviews.org/doi/pdf/10.1146/annurev.cellbio.21.020904.151711

(3)     Sabatini, D. D., 2010.  Philip Siekevitz: Bridging biochemistry and cell biology.  The Journal of Cell Biology189:3-5.  Available on the internet at:  http://jcb.rupress.org/content/189/1/3.full.pdf.

 

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                            UNDER THE WEBSITE TITLE

 

 

<:header>

<:header>SCIENTISTS TELL US ABOUT THEIR LIFE AND WORK, PART 6

 

 

 Cover of 1992 book by Thomas E. Starzl. Published by the University of Pittsburgh Press, and available from many bookstores and internet booksellers. (http://dr-monsrs.net)

Cover of 1992 book by Thomas E. Starzl. Published by the University of Pittsburgh Press, and available from many bookstores and internet booksellers. (http://dr-monsrs.net)

 

In this series, I am recommending to you a few life stories about real scientists.  I prefer to let these scientists tell their own stories where possible.  Autobiographical accounts are interesting and entertaining for both non-scientists and other scientists.  My selections here mostly involve scientists I either know personally or at least know about.  If further materials like this are needed, they can be obtained readily on the internet or with input from librarians at public or university libraries, science teachers, and other scientists.  In the preceding segment of this series, the story of a very creative and individualistic research scientist working in Chemistry & Biochemistry was recommended (see “Scientists Tell Us About Their Life and Work, Part 5”).  Part 6 presents the dramatic story of a dynamic clinical researcher in surgical science, who pioneered in human organ transplantation and who now works on basic research studies of immunology.

Part 6 Recommendations:  TRANSPLANT SURGERY & IMMUNOLOGY

Prof. Thomas E. Starzl (1926 – present) developed the complex experimental procedures for human liver transplantation into a practical clinical treatment for human patients with liver failure.  His vigorous research efforts for transplantation of livers involved clinical practice with very endangered infant and adult patients, development of new technical procedures and surgical protocols, innovations of adjunctive manipulations in clinical immunology (i.e., therapeutic immuno-suppression), and logistical coordination of the several different clinical teams involved with each transplant surgery.  This long clinical development followed his preceding surgical career involving the transplantation of several other human organs.  Following his retirement from clinical surgery in 1991, Prof. Starzl turned his research attention to basic laboratory experiments on the immune system; this switch reflects his strong belief in bidirectional interchanges between the clinical hospital and research laboratories.  It is nothing less than astounding that he has authored several thousands of research publications during his long academic career and continues this blistering pace today.  The University of Pittsburgh has named a research building on their clinical campus as the Thomas E. Starzl Transplantation Institute.  Dr. Starzl has received many awards and prestigious honors, including the Medawar Prize (1992), the USA National Medal of Science (2004), and the Lasker-DeBakey Clinical Medical Research Award  (2012).

Much information about this giant in surgical science can be found at The Official Thomas E. Starzl Website      ( http://www.starzl.pitt.edu/ ).  My first recommendation is an illustrated story about his personal life and professional activities.  The second gives a clear exposition about what happens when an entire human organ is transplanted.  My third recommendation presents his account about the development of liver transplantation into a successful surgical treatment for end-stage liver disease, and is well-suited for general adult readers.  The  fourth recommendation is a truly wonderful video showing the very long research process needed to develop modern liver transplantation, and demonstrating how this surgical advance now greatly benefits clinical patients.

(1) The Official Thomas E. Starzl Website, 2014.  About Thomas E Starzl, M. D., Ph. D.  Available on the internet at:  http://www.starzl.pitt.edu/about/starzl.html .

(2) The Official Thomas E. Starzl Website, 2014.  Statement of impact.  Available on the internet at:  http://www.starzl.pitt.edu/impact/impact.html .

(3) Strauss, E., 2012.  Award description for the Lasker-DeBakey Clinical Medical Research Award.  Available on the internet at:  http://www.laskerfoundation.org/awards/2012_c_description.htm .

(4) Lasker Foundation, 2012.  An interview with Thomas E. Starzl.  Available on the internet at:  http://www.laskerfoundation.org/awards/2012_c_interview_starzl.htm

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                            UNDER THE WEBSITE TITLE

 

 

SCIENTISTS TELL US ABOUT THEIR LIFE AND WORK, PART 5

 

Quote from the 1993 Nobel Prize Lecture in Chemistry by Kary Banks Mullis

Quote from the 1993 Nobel Prize Lecture in Chemistry by Kary Banks Mullis

 

In this series, I am recommending to you a few life stories about real scientists.  I prefer to let these scientists tell their own stories where possible.  Autobiographical accounts are interesting and entertaining for both non-scientists and other scientists.  My selections here mostly involve scientists I either know personally or at least know about.  If further materials like this are needed, they can be obtained readily on the internet or with input from librarians at public or university libraries, science teachers, and other scientists.  In the preceding segment of this series, the life story of a world-renowned research scientist working in Experimental Pathology & Cell Biology was recommended (see “Scientists Tell Us About Their Life and Work, Part 4”).  Part 5 presents the adventures of an energetic individualist whose creative scientific research enabled the molecular genetics revolution to take place in biology and medicine.

Part 5 Recommendations:  CHEMISTRY & BIOCHEMISTRY

Kary Banks Mullis (1944 – present) is an extremely creative free-thinker who invented the polymerase chain reaction (PCR) during his chemical research studies at an industrial research center.  This technological breakthrough enables DNA amplification (i.e., creation of myriad exact copies of some length of DNA), and now has been expanded into many new protocols and new instrumentation for molecular genetics, paternity testing, genomics, and personalized medicine.  The 1993 Nobel Prize in Chemistry was awarded to him for this very influential research discovery.  Dr. Mullis recognized that his Nobel Prize provided the opportunity to be able to freely announce his reasoned viewpoints about controversial topics in science and in ordinary life; he always is a very outspoken scientist and a vibrant individual.  He has preferred to conduct research within industrial laboratories, and currently works as a Distinguished Researcher at the Children’s Hospital and Research Institute in Oakland, California.

A considerable number of very fascinating stories and personal information, as well as a very clear explanation of how the PCR operates, is available on the website of Dr. Mullis (http://www.karymullis.com ).  His childhood interest in chemistry and research is recorded as a most amusing video presentation (see “Sons of Sputnik: Kary Mullis at TEDxOrangeCoast”, available on the internet at:  https://www.youtube.com/watch?v=iSVy1b-RyVM ).  The life story of Dr. Mullis epitomizes that many great researchers excel in personal determination, asking provocative questions, and thinking new thoughts (see my earlier article in the Scientists category on “Curiosity, Creativity, Inventiveness, and Individualism in Science”).

My first recommendation is his brief illustrated autobiography.  The second is a very personal account of how the notable discovery of PCR was made, and includes stories about his life as a student and a scientist.   The third is a video interview in 2005, 12 years after he became a Nobel Laureate; this includes some advice for young science students.  My fourth recommendation is his formal Nobel Prize lecture, presenting personal stories about his being a scientist, and including a vivid description of his “eureka moment” when he realized the significance of his amazing new research finding.

(1) Mullis, K.B., 2014.  Biography, and making rockets.  Available on the internet at:
http://www.karymullis.com/biography.shtml ).

(2) Mullis, K.B., 1993.  Autobiography, and addenda.  Available on the internet at:
http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1993/mullis-autobio.html.

(3) The Nobel Prize in Chemistry (1993), 2005.  Interview with Kary B. Mullis – Media Player at Nobelprize.com.  Available on the internet at:  http://www.nobelprize.org/mediaplayer/index.php?id=428 .

(4) Nobel Prize Lecture by K.B. Mullis, 1993.  Nobel Lecture: The polymerase chain reaction.  Available on the internet at:  http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1993/mullis-lecture.html .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                           UNDER THE WEBSITE TITLE

 

WHY ARE UNIVERSITY SCIENTISTS INCREASINGLY UPSET WITH THEIR JOB? PART II.

 

Why is quality researching and teaching now so problematic for university scientists? (http://dr-monsrs.net)

Why is quality researching and teaching now so problematic for university scientists? (http://dr-monsrs.net)

 

Part I of this essay identifies the chief causes and consequences for the increasing dismay and dissatisfaction of scientists working in universities for researching and/or teaching (see “Why are University Scientists Increasingly Upset with their Job?  Part I”).  Part II now discusses the effects of this condition upon the conduct of experimental research and science education in universities; further, I explain what can be done to deal with this current issue.

What do the changes in Part I mean for scientific research and science teaching in universities? 

The whole nature of science and research at universities recently has changed.  The altered and decreased standards for quality performance in research and teaching means that a decline is inevitable in both activities.  Rather than being a university scientist, members of the science faculty now are forced to become businessmen and businesswomen.  Instead of working at the laboratory bench, far too many successful university scientists become managers doing paperwork while sitting at a desk in an office, but never entering their laboratory.  Acquisition of more and more research grant dollars now is their chief goal, instead of trying to discover more new truths and create valid new concepts through research experiments.

When doctoral research scientists become transformed into business managers, they are then expected to perform activities that all their many years of advanced education and training have not prepared them for (e.g., acquiring money, adjusting experimental data to fit what is wanted, bargaining, composing research grant proposals based only on what is most likely to be funded, handling investments and charting profit margins, interacting with other scientists only as either competitors or collaborators, etc.).  I know of no evidence that being good or clever at making money in business is more than very loosely related to being good or clever at doing research experiments; these two sets of skills and capabilities seem to me to be separate and unrelated.

Science and scientists at universities have been modified to such an extent that activities, performance, and advancement now are being evaluated with very different criteria than were used only a few decades ago.   Even science education is negatively affected, because quality standards for teaching are lowered, students are not taught to think independently and to ask meaningful questions, the development of understanding by students is not fostered, etc.; often, all of these are decreased or even negated.  University scientists concentrating on teaching activities now are evaluated mainly on the basis of their popularity with students, instead of being evaluated for educational quality.  I will never forget the time I was very shocked when a senior faculty teacher once confided to me that he believed his own required first-year medical school course had degenerated into something suitable for high school students.

The overall effect of the enlarging dissatisfaction by science faculty is a progressive decrease in the quality of both researching and teaching.  The activities of professional scientists at universities now are degraded due to the changes and consequences enumerated in Part I (see “Why are University Scientists Increasingly Upset with their Job?  Part I”).

Can university research and science teaching be rescued? 

What should be done to resolve the current predicament of university scientists?  Finding effective solutions for these vexing academic problems certainly is not easy, particularly because academia historically always has been very slow to change anything even when it is totally obvious that changes are badly needed.  Possible solutions could be sought either by (1) rectifying the general policies and practices at modern universities, or by (2) improving the individual situation for each  disgruntled and demoralized scientist.  Since I regretfully do not see how the first possibility can be accomplished at the present time, I will consider here only the second possibility.

Why do I feel that university policies and practices cannot be reformed now?  Universities generally are very happy with exactly the same changes that upset their science faculty, since those maneuvers have significantly elevated the financial position of these institutions (see “Three Money Cycles Support Scientific Research”).  Any large and comprehensive solution for the problems in academia probably must await strong reform measures that can replace the ongoing commercialization of doing research in universities with some modern version of its traditional aims of finding new truth, creating valid new concepts, and, developing new ideas and new technology.  Similarly, in all levels of teaching science in universities, changes that can improve the present decayed educational system seem unlikely until there will be removal of such unrealistic philosophies as “truth is relative”, “all children are equal”, “education should be made easier, so students can learn quicker”, and, “that’s good enough”.  In my view, all such anti-education liberal proclamations really are only excuses for failure to do effective teaching.

What can actually be done to improve job satisfaction for individual faculty scientists? 

My suggestions here are directed towards practical considerations.  Because I believe that the policies for scientific research in universities are very unlikely to be changed or improved for a long time, I suggest that the best approach for individuals is to move out of the way of whatever causes their dissatisfaction.  This entails evaluating the nature of their problematic situation and the amount of change they believe is needed.  Many will find that this ultimately boils down to asking oneself whether it is time to find a better place to work.  I do indeed know personally that this is never an easy question, and that moving usually is very disruptive for the career of any academic scientist.  However, it should be recognized by all the upset university scientists that there now are an increasing number of good employment opportunities for scientists that are quite different from working in traditional roles at universities.  One now can conduct research experiments at the laboratory bench outside universities, or can perform science-related work completely outside research laboratories.  I already have discussed a number of these non-traditional opportunities in recent articles primarily aimed to inform graduate students and Postdocs (see “Other Jobs for Scientists, Parts I, II, and III”).

Dissatisfied university scientists who remain very enthusiastic about continuing to do lab research should seriously look at what is available in industrial research and development centers, and in government laboratories.  Much valuable information about these possibilities can be obtained by directly talking to doctoral scientists now working in these other environments, and personally asking them what they see as being serious local job problems.

Dissatisfied science faculty who still are very committed and enthusiastic about continuing to teach science should try to find a new employer, either at other universities or at non-university sites, where their viewpoints about what constitutes excellent education are shared with the other teachers and are actually put into practice (i.e., lip-service is not enough!).  With the recent development of digital education outlets, educational video programs, non-university course offerings, personal education coaches, private educational organizations, etc., there now are an increasing variety and number of employment opportunities for good science teachers to do new things.

Concluding Remarks for Part II

The increasing levels of job dissatisfaction amongst university faculty researchers and science teachers stem from the recent large shifts in (1) professional identity, (2) job aims and duties, (3) standards for job performance evaluations, (4) career expectations, and, (5) commercialization of academic research and teaching.  These modern changes largely run against what most practicing academic scientists were taught in graduate school, and directly give rise to increasing levels of job frustration and dismay.  The main message here is that these changes also act to decrease the quality of both scientific research and science teaching.  It is nationally important that good solutions to this quagmire must be developed.  It is up to each individual scientist to find a good environment for doing quality research and quality teaching.  The increased variety of job opportunities now available for scientists make non-traditional solutions to this important problem a realistic possibility.

Conclusions for Both Parts I and II

University scientists are increasingly upset with their job due to wholesale changes in many different aspects of researching and teaching.  Science at universities now is being degraded, and the professional roles of faculty scientists increasingly are distorted.  This problem is not some isolated small esoteric issue, but rather involves the purpose of science and research, and, the objective of becoming a doctoral scientist.  These very destructive changes in universities constitute a large portion of the reasons why I have come to believe that science itself now is dying (see my recent article in the Big Problems category on “Could Science and Research now be Dying?”).

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                         UNDER THE WEBSITE TITLE

WHY ARE UNIVERSITY SCIENTISTS INCREASINGLY UPSET WITH THEIR JOB? PART I.

 

Why is quality researching and teaching so problematic for university scientists? (dr-monsrs.net)

Why is quality researching and teaching now so problematic for university scientists? (http://dr-monsrs.net)

 

The traditional work for doctoral scientists employed as faculty at universities is laboratory research and classroom teaching.  All that now has changed greatly.  Readers who are not scientists should first learn about the actual job activities of university scientists (see “What do University Scientists Really do in their Daily Work?”); that will greatly aid in understanding this essay.  A surprising number of faculty scientists performing research studies now find that they are frustrated, dismayed, and increasingly dissatisfied with their job activities.  Even senior scientists mostly working in classroom teaching now feel that they get less and less professional satisfaction for trying to do a good job with science education in undergraduate, graduate, and medical school courses.

My examination of this growing problem in modern universities is divided into 2 parts.  The first presents the causes of why the science faculty are so upset, and examines the unfortunate consequences.  The second part will detail how these recent changes impact on science and scientists, and discusses what can be done to alleviate this distressing condition for university scientists.

What is causing job dissatisfaction amongst university scientists? 

From my own experiences during over 35 years of faculty work at several universities, and from talking to many different faculty members at other academic institutions, I know that many university scientists feel that they now are not readily able to do research as they were trained to do.  Their identity as scientists is constantly challenged by the changed job goals, hyper-competition for research grants that takes them away from the lab bench, and, pressures to accept or ignore professional dishonesty.  They also unexpectedly find that they have been incompletely educated, since their graduate courses and long training included no formal instruction on how to be successful as a business executive, financial jockey, administrative manager, and salesperson, while still officially being a professional scientist at work on researching and teaching.  Accordingly, their daily life as modern university faculty gets to be quite problematic (see earlier articles on “The Life of Modern Scientists is an Endless Series of Deadlines” and “Why is the Daily Life of Modern University Scientists so very Hectic?”).

There are 5 chief causes for this unfortunate dissatisfaction in academic science

(1) Traditional evaluation of quality performance in research has been replaced by counting dollars acquired from research grants.  This changes the entire nature of university research.

(2) Traditional evaluation of quality performance in teaching now has been replaced by measuring popularity of teachers and courses with the enrolled students .  This changes the entire nature of university teaching.

(3) Doing significant experimental research has only a strictly secondary importance since the main job of the science faculty now is to increase the financial profits of their university employer (see  “What is the New Main Job of Faculty Scientists Today?”).  This changes the very nature of being a science faculty member at modern universities.

(4) Science faculty members doing grant-suppported research are only renting their laboratory.  Unless they win a Nobel Prize there are no long-term leases of research laboratories, even for tenured professors.  This necessarily changes the nature of anyone’s career as a university research scientist.

(5) Individual curiosity, creativity, and interests are increasingly submerged into mechanical types of research activities requiring little individual initiative or self-determination, particularly when doctoral researchers come to work as technicians inside large groups (see my recent article on “Individual Work Versus Group Efforts in  Scientific Research”).  Research groups commonly involve research managers, group-think in tightly knit team projects, and daily attention to financial targets for research grant awards.  This changes the nature of any research career at universities.

Although these causes and their resulting consequences seem very obvious to me, readers should be aware that they are disputed or even denied by academic officials and some other scientists.  It is my belief that the present decrease in the quality of research and science teaching that results from faculty dissatisfaction is a serious national problem that someday will become very obvious for all to see.

What are the consequences for university scientists? 

Let us briefly look at the main consequences coming from each of the 5 major causes for current faculty dissatisfaction listed above.

(1)  Making research at universities into a business activity brings all kinds of secondary problems from the world of modern commerce into research laboratories (e.g., corruption, deceit, graft, greed, mercantilism, vicious competition, etc.).  These necessarily decrease science integrity (see my earlier article on “Why Would Any Scientist Ever Cheat?”), and thereby subvert trust in research, science, and scientists.

(2)  When popularity with students becomes the goal of science courses in universities, then teachers start bringing pizza and bowls of punch into the classroom in order to raise their chances for winning a “teacher of the year” award.  Concomitantly, standards are lowered or discarded as education becomes sidetracked from its true purpose.  Popularity and excellence in teaching simply are not synonymous (see my recent article on “A Large Problem in Science Education: Memorization is not Enough, and is Not the Same as Understanding”.

(3)  If finding new truths is no longer the chief aim of scientific research then the standards for evaluating what is true will change and decay (see “How do we Know What is  True?”).  Dollars cannot be any valid measure of what is true.

(4)  Sooner or later, all science faculty researching in university laboratories will encounter the problem of not getting an application for research grant renewal approved and funded.  Even when they have previously merited several grant renewals, such a rejection means that they soon are pushed out of their laboratory.  University labs are only leased, and all space assignments therefore are temporary; if the rent is not paid by a research grant, then occupancy ends.  This necessarily means that laboratory research at universities must be only some temporary work, rather than an ongoing career activity.

(5)  Working as a businessperson, chief manager, executive officer, financial administrator, research director, etc., is very different from being a professional researcher and/or teacher at a university.  The mentality, integrity, and accountability in these two sorts of employment are very different.  Universities formerly have valued and encouraged creativity, curiosity, debate, and individualism much more than these are utilized or accepted in businesses where money determines everything (see article on “Introduction to Money in Modern Scientific Research”).  These qualities now have been changed into requirements for conformity to executive authority, group-think, subordination of curiosity and creativity, and, willingness to never ever ask any questions.

Concluding Remarks for Part I

The chief causes and consequences of the growing dissatisfaction of university science faculty with their job now can be clearly recognized. Universities believe this entire situation is wonderful  because their financial situation now is much improved.  The end results of putting up with these unannounced changes are that members of the science faculty are sidetracked from traditional research, forced to work at activities they have not been trained to do, spend most of their time working on research grant applications, and, are involved in a business career rather than in science.  Scientific research in academia now has become increasingly commercialized (see my earlier essay on “What is the Very Biggest Problem for Science?”).  Most science faculty become very surprised with how different their daily life actually is from what they had expected in graduate school.  It is hard to conclude anything more striking from this essay than that science itself has been changed.

In summary, science faculty working at modern universities on research and/or teaching are increasingly frustrated and upset because their planned career is diverted, their integrity is challenged, their curiosity and creativity are squelched, their research is sidetracked into business aims, and their long education is made to seem quite incomplete.  No wonder they are so upset!!  Part II will discuss the effects these changes have upon researching and teaching, and, will give my views about what realistically can be done to deal with this modern academic problem.

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                          UNDER THE WEBSITE TITLE

 

SCIENTISTS TELL US ABOUT THEIR LIFE AND WORK, PART 4

Quoted from Marilyn G. Farquhar in 2013 interview by C. Sedwick (Journal of Cell Biology, volume 203, pages 554-555).

Quoted from Marilyn G. Farquhar in 2013 interview by C. Sedwick (Journal of Cell Biology, volume 203, pages 554-555).

 

In this series, I am recommending to you a few life stories about real scientists.  I prefer to let these scientists tell their own stories where possible.  Autobiographical accounts are interesting and entertaining for both non-scientists and other scientists.  My selections here mostly involve scientists I either know personally or at least know about.  If further materials like this are needed, they can be obtained readily on the internet or with input from librarians at public or university libraries, science teachers, and other scientists.

In the preceding segment of this series, the life story of a world-renowned research scientist working in Astrophysics was recommended (see “Scientists Tell Us About Their Life and Work, Part 3”).  Part 4 presents the activities and life of an experimental researcher who succeeded in bridging the gap between pathology and cell biology, and who today remains a very active research leader in modern cell biology.

Part 4 Recommendations:  EXPERIMENTAL PATHOLOGY & CELL BIOLOGY

Prof. Marilyn G. Farquhar (1928 – present) applied her many research skills to vigorously investigating the fine structure of kidney cells during several renal diseases.  These results greatly advanced understanding about the function and dysfunction of the filtration barrier during different disease states, and helped establish the now-routine use of electron microscopy of kidney biopsies for clinical diagnosis.  Her subsequent productive investigations in cell biology on the Golgi bodies, intercellular junctions, intracellular sorting and trafficking,  lysosomes and autophagy, protein secretion and uptake, receptor-mediated endocytosis, and, G-proteins have greatly enlarged modern understanding about the dynamics of subcellular structure and function.  Prof. Farquhar’s experimental work, research publications, and teaching lectures always are characterized by their completeness, uniform high quality, and establishment of connections to other research results.  She has served as the elected President of the American Society for Cell Biology (1982), and has received many honors (e.g., the E. B. Wilson Medal from the American Society for Cell Biology (1987), the Rous-Whipple Award from the American Society for Investigative Pathology (2001), and the A. N. Richards Award from the International Society of Nephrology (2003)).

My first 3 recommendations below provide recent appreciations of Prof. Farquhar for her pioneering and much admired research accomplishments in experimental renal pathology.  The fourth recommendation briefly recounts the delightful story of her life as an acclaimed  research scientist, based upon a very recent interview.

UCSD School of Medicine News, April 4, 2001.  Marilyn Gist Farquhar wins Rous-Whipple Award.  Available on the internet at:  http://health.ucsd.edu/news/2001/04_04_Farquhar.html .

Kerjaschki D, 2003.  Presentation of the 2003 A. N. Richards Award to Marilyn Farquhar by the International Society of Nephrology.  Kidney International, 64:1941-1942.  Available on the internet at:
http://nature.com/ki/journal/v64/n5/full/4494114a.html .

Farquhar, M., 2003.  Acceptance of the 2003 A. N. Richards Award.  Kidney International, 64:1943-1944.  Available on the internet at:
http://www.nature.com/ki/journal/v64/n5/full/4494115a.html .

Sedwick, C., 2013.  Marilyn Farquhar from the beginning.  Journal of Cell Biology  203: 554-555.  Available on the internet at:  http://jcb.rupress.org/content/203/4/554.full.pdf .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                           UNDER THE WEBSITE TITLE

SCIENTISTS TELL US ABOUT THEIR LIFE AND WORK, PART 3

The life and work of Prof. R. Chandrasekhar elicited many books. The commendable volumes shown above both were edited by K. C. Wali. Left: published by World Scientific Publishing (Singapore) in 2011. Right: published by Imperial College Press (London) in 1997. These and other volumes can be purchased at several booksellers on the internet.

The life and work of Prof. S. Chandrasekhar elicited many books. The commendable volumes shown above both were edited by K. C. Wali.  Left: published by World Scientific Publishing (Singapore) in 2011.  Right: published by Imperial College Press (London) in 1997. These and other books can be purchased at several booksellers on the internet.

 

In this series, I am recommending to you a few life stories about real scientists.  I prefer to let the scientists tell their own stories where possible.  Autobiographical accounts are interesting and entertaining for both non-scientists and other scientists.  My selections here mostly involve scientists I either know personally or at least know about.  If further materials like this are needed, they can be obtained readily on the internet or with input from librarians at public or university libraries, science teachers, and other scientists.

Part 2 in this series contained my recommendations for the story of a pioneering research scientist working in Cell Biology (see “Scientists Tell Us About Their Life and Work, Part 2”).  Part 3 presents fascinating accounts about a famous researcher working on Astrophysics, a branch of Physics and Astronomy that is very mystifying to almost everyone, including most other professional scientists.

Part 3 Recommendations:  ASTROPHYSICS

Prof. Subrahmanyan Chandrasekhar (1910 – 1995) lived and researched on 3 continents, and was honored in 1983 with the Nobel Prize in Physics.  His life story is nothing less than utterly fantastic and inspiring.  Not many 18 year old youths either could or would work with mathematics of statistical mechanics (in physics and astronomy) during a ship voyage from India to England, but that is exactly what this young scientist did.  In his long academic career, Chandrasekhar was always a scholar’s scholar.  Most persons addressed him as “Chandra”.  He progressively studied different topics pertaining to the physics of stars and other subjects in astronomy, resulting in a series of much-admired and widely used books in physical science.  There is a story from his many years of research work at The University of Chicago that he had a personal rule that about every 7-10 years a scientist must change to work on a new research subject.   He accomplished this by first publishing a scholarly book completely summarizing and documenting his recently finished research project, and then throwing out the entire contents of several filing cabinets containing huge piles of reprints of published research reports and stacks of mathematical calculations needed for the previous project; only then did Chandra initiate his new research effort.  Few, if any other scientists have the extreme discipline and mental strength to follow such a dictum today!  Chandrasekhar’s research developed and moved forward until he became recognized as the world leader in the subscience of astrophysics.

I recommend here a descriptive obituary for general non-scientist readers, along with an excellent biographic article about Chandrasekhar’s life and influence on modern physical science.  These are followed by two brief recordings (click on “mp3″ to start the audio) from a full transcript of a very extensive live interview in 1977 ( http://www.aip.org/history/ohilist/4551_1.html ).

Parker, E.N., 1995.  Obituary: Subrahmanyan Chandrasekhar.  Physics Today 48:106-108.  Available on the internet at:  http://scitation.aip.org/content/aip/magazine/physicstoday/48/11/ptolsection?heading=OBITUARIES ; NOTE: after reaching this site for Obituaries, you must first click the title of this article and then click on the “download PDF” button).

Dyson, F., 2010.  Chandrasekhar’s role in 20th-century science.  Physics Today 63:44-48.  Available on the internet at:   http://scitation.aip.org/content/aip/magazine/physicstoday/article/63/12/10.1063/1.3529001 .

Weart, S., & American Institute of Physics Center for History of Physics, 2014.  Interview with S. Chandrasekhar (on his hopes for becoming a scientist), 1977.  Available on the internet at:  http://www.aip.org/history/ohilist/4551_1.html#excerpt .http://scitation.aip.org/content/aip/magazine/physicstoday/article/63/12/10.1063/1.3529001

Weart, S., & American Institute of Physics Center for History of Physics, 2014.  Interview with S. Chandrasekhar (on the motives for his style of work), 1977.  Available on the internet at:  http://www.aip.org/history/ohilist/4551_1.html#excerpt2 .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                           UNDER THE WEBSITE TITLE

 

SCIENTISTS TELL US ABOUT THEIR LIFE AND WORK, PART 2

Prof. Keith R. Porter (right) receives the USA National Medal of Science from President Jimmy Carter (left) at the White House in 1977. Photograph by an unnamed White House staff photographer.

Prof. Keith R. Porter (right) receives the USA National Medal of Science from President Jimmy Carter (left) at the White House in 1977.  Photograph by an unnamed White House staff photographer.

 

In this series, I am recommending to you a few life stories about real scientists.  I prefer to let these scientists tell their own stories where possible.  Autobiographical accounts are interesting and entertaining for both non-scientists and other scientists.  My selections here mostly involve scientists I either know personally or at least know about.  If further materials like this are needed, they can be obtained readily on the internet or with input from librarians at public or university libraries, science teachers, and other scientists.

In the preceding Part 1 of this series, the life story of a world-renowned research scientist working in Nanoscience and Nanotechnology was recommended (see “Scientists Tell Us About Their Life and Work, Part 1”).  Part 2 presents fascinating materials about a wonderful research leader who was instrumental in founding 2 different bioscience societies, and was a pioneer in discovering how to get cells to reveal their secrets by means of electron microscopy.

Part 2 Recommendations:  CELL BIOLOGY

Prof. Keith R. Porter (1912 – 1997) is renowned today as a major co-founder of the modern science discipline, cell biology.  With his pioneering use of electron microscopy, he was able to define the organelles and macromolecular assemblies found inside cells, thereby setting the stage for interpreting other research findings coming from biochemistry, biophysics, cell physiology, and molecular genetics.  These results and his new concepts caused a large breakthrough in our understanding about relationships between structure and function in eukaryotic cells.  A good number of Porter’s younger associates in cell biology, experimental cellular pathology, and neuroscience went on to become famous research leaders.  Prof. Porter was honored with the USA National Medal of Science by President Jimmy Carter in 1977.

I am recommending 3 different articles about this outstanding biomedical scientist.  The first is a memoir about Prof. Porter composed by one of his long-time research co-workers, Prof. Lee D. Peachey (University of Pennsylvania); it includes several candid photographs from different periods in Porter’s career, some of which reflect his enthusiastic sense of humor.  The second nicely describes his many important activities and different research accomplishments.  The third is one of Porter’s own articles, relating the difficult technical innovations and engineering efforts needed to invent and develop effective methods for making meaningful images of cells and their internal parts with the electron microscope.

Peachey, L.D., 2006.  Keith Roberts Porter, biographical memoirs.  Proceedings of the American Philosophical Society  150:685-696.  Available on the internet at:
http://www.amphilsoc.org/sites/default/files/proceedings/150416.pdf/ .

University of Colorado Libraries (Boulder), 2014.  Biographical Sketch.  In: Guide to the Keith R. Porter Papers (1938-1993), Archives, pages 3-5.  Available on the internet at:
https://ucblibraries.colorado.edu/archives/guides/porter_guide.pdf .

Pease, D.C. & Porter, K.R., 1981.  Electron microscopy and ultramicrotomy.  Journal of Cell Biology  91:287s-292s.  Available on the internet at:
http://jcb.rupress.org/content/91/3/287s.full.pdf .

 

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                           UNDER THE WEBSITE TITLE

 

 

SCIENTISTS TELL US ABOUT THEIR LIFE AND WORK, PART 1

 

Prof. Sumio Iijima giving an invited talk to "Nanotechnology in Northern Europe Congress and Exhibition" in 2006 at Helsinki, Finland (http://swww.nanotech.net/ntne2006.htm )

Prof. Sumio Iijima speaking to “Nanotechnology in Northern Europe Congress and Exhibition” in 2006 at Helsinki, Finland (http://www.nanotech.net/ntne2006/news.htm )

 

Some scientists are traditional sedate scholars, while certain others fulfill the Hollywood image of being quite mad.  Most research scientists are somewhere in between these extremes, but often have lives filled with new experiments, several surprises, and much perspiration, as well as with some acclaim by other researchers, personal satisfaction, and at least a little bit of fun (see my article in the Basic Introductions category on “What is the Fun of Being a Scientist?”).  Winners of the biggest science prizes often show major strengths at being imaginative, argumentative, and humorous during many years of work in their research laboratories.

Ordinary people typically know nothing at all about the life of any individual scientist.  Children in school unfortunately study only dead scientists and almost never get to see and learn about living professional researchers as fellow people.  Teenagers like to read about strong personalities in fantastic predicaments, but very few teens realize that some living scientists have exactly those adventures.  Most modern adults worship sports stars and TV celebrities, and so are not able to perceive that after many years of effort, a hard-working research scientist who is one of their neighbors finally succeeds in establishing a new theory by the sheer strength of will and character.

Introduction

In this series, I am recommending to you a few life stories about real scientists.  I prefer to let the scientists tell their own stories.  Their autobiographical accounts are interesting and entertaining for both non-scientists and other scientists.  My selections here mostly involve scientists I either know personally or at least know about.  If further materials like this are needed, they can be obtained readily on the internet or with input from librarians at public or university libraries, science teachers, and other scientists.

Most of these materials reveal the human aspects and personalities of individual scientists, and are not primarily intended to explain or instruct about science.  By getting to know more about the life of a few real scientists, I hope that readers/viewers/listeners will conclude that all these special individuals are also their fellow human beings.

Part 1 Recommendations: NANOSCIENCE & NANOTECHNOLOGY

Prof. Sumio Iijima (1939 – present) is known globally for his co-founding of the new discipline, nanoscience, through his 1991 discovery of carbon nanotubes.  Today, many hundreds of other research scientists and engineers around the world are working to further develop carbon nanomaterials for dramatic new devices and innovative uses in energy storage, clinical medicine, and industrial processes.  This leading Japanese scientist was honored in 2008 as one of the inaugural Kavli Prize awardees in Nanoscience.

Prof. Iijima is somewhat unusual because he is working on research both in academia (Meijo University, at Nagoya) and in industry (NEC Corporation).  I recommend everyone’s attention first to viewing a wonderful video of his masterful public presentation given at a Friday Evening Discourse (London) in 2007.  Secondly, read the delightful autobiographical account describing his childhood and research career; this also presents his personal advice to youths beginning their career in science.  A third article gives his own story about discovering carbon nanotubes.  Much further information about his life and work are available on Prof. Iijima’s own website  (http://nanocarb.meijo-u.ac.jp/jst/english/mainE.html ); a gallery of photographs also is available (http://nanocarb.meijo-u.ac.jp/jst/english/Gallery/galleryE.html ).

Iijima, S. & The Vega Science Trust, 1997.  Nanotubes: The materials of the 21st century.  Available on the internet at:   http://vega.org.uk/video/programme/71 .

Iijima, S., 2014.  About myself.  NEC, Carbon nanotubes.  Available on the internet at:
http://www.nec.com/en/global/rd/innovative/cnt/myself.html .

Iijima, S., 2014.  The discovery of carbon nanotubes.  Available on the internet at:
http://nanocarb.meijo-u.ac.jp/jst/english/Iijima/sumioE.html .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                           UNDER THE WEBSITE TITLE

  

 

OTHER JOBS FOR SCIENTISTS, PART III: UNCONVENTIONAL APPROACHES TO FIND OR CREATE EMPLOYMENT OPPORTUNITIES

 

Many Jobs now are Available for Doctoral Scientists (http://dr-monsrs.net)

Many Jobs now are Available for Doctoral Scientists   (http://dr-monsrs.net)

 

The first 2 parts of this series have explained that job seekers holding a PhD in science have a large range of different employers and job positions to consider (see recent articles in the Scientists category on “Other Jobs for Scientists, Part I: Working in Science Outside of Traditional Situations” and “Other Jobs for Scientists, Part II: Research Jobs in Industry or Government Labs”).  Some provide opportunities for continuing to work in laboratory research, while others involve science and research only indirectly (i.e., science-related jobs).  Yet other possibilities do not involve science or research at all.  Many in this last group can be seen as being very unconventional jobs for scientists.  The nature of such unusual employment, and advice about how to find or create it, is presented and discussed in Part III below.

Finding science-related jobs for science PhD’s

Traditionally, a career in scientific research or any other business can be considered as being analogous to climbing a ladder.  This viewpoint necessarily means that if you are not able to step onto the first rung of the ladder (i.e., find some type of first job), then there is zero chance that you will ever be able to climb up that particular ladder.  However, once you have acquired some job and accomplished something (i.e., have moved up to rung number 2 or 3 by doing well and learning more during 1-2 years), it also becomes realistically possible to jump onto a different ladder (i.e., to switch to a different and better job).  Yes, experience makes a big difference!  Each job seeker must find their own path to a good job.

For some young scientists, it can be difficult to find a traditional research job either at universities, industrial research and development centers, or government research facilities.  In such cases, it is necessary to become more flexible about theoretical possibilities and realistic practicalities.  A key major question you must face is how much you as a scientist are determined to work only on research activities.  If you will consider working with science at non-traditional venues, or working on science-related jobs that do not directly involve lab research, then very many additional possibilities for employment will arise.  I already have introduced many examples of different science-related employment positions in Part I.

Becoming unconventional in your job search

The more doors that remain open, the greater choice of jobs you will have.  Restricting where and what you are looking at necessarily closes some doors.  What if nothing works in your search for employment and all seems hopeless?  Then, it is time to learn to think very much more creatively!  Even if you are only seeking a conventional kind of job, using unconventional approaches might give you an advantage or open some more doors.

Many new science PhD’s and Postdocs must escape from the straightjacket of traditional academic research, and learn to consider other possibilities outside universities and even outside science.  If these are unconventional, so what?  I once actually encountered a professional driver for a limousine company with a PhD; he likes to talk with scholarly overtones to me and all his many different clients about philosophy and politics, and seemed quite happy doing that!  I doubt that he ever planned to be a fulltime professional driver; it is possible that he first tried this job only as some temporary work, and then unexpectedly came to realize that this unconventional position suited his individual situation very nicely.

I consider Edwin H. Land as a spectacularly creative scientist and admirable human (see my earlier article in the Scientists category on “Curiosity, Creativity, Inventiveness, and Individualism in Science”).  Land did not seek a job, but instead he created one for himself!  Actually, he created several jobs for himself (i.e., scientist, educator, engineer, industrialist, and visionary)!  Even in his early college days, he was so determined to do experimental research that he got permission to work at night on his own research in a professor’s empty laboratory; he went on to continue to do research on several subjects during his later years running the Polaroid Corporation.   Probably, none of us has the same magic that emanated from Prof. Land, but you can try to copy his creative spirit when seeking to find a suitable job for yourself.  Can you do that?  Try it and see!

There are many different ways to create your own job.  If you can form some small business operation, you can hire yourself!  If you can convince a company that they need some new service, and if you can provide exactly such, then you might have created your own job!  If you can invent something new and useful to others, you can either manufacture and market it, or sell the idea or patent!  If you can innovate some new software that others will want to utilize, then you can license it for use or establish a new computer company!  If you do not have enough money to be able to start something like this, you can borrow funds from family or friends, or you can work temporarily at some ordinary job until you have saved enough capital; another approach is to try to win support via crowd-funding [e.g., 1-3].  Be imaginative in what you try to do!

Miscellaneous advice for job seekers from Dr.M

New scientists should never forget that you do indeed already have some valuable skills and experience in science and research, or you would not have succeeded in earning your doctoral degree.  Hence, you can have confidence in your own abilities to overcome the problems with finding a suitable job!  Besides your own self, you already have many external resources to help your search; never hesitate to consult with your former thesis advisor, postdoctoral mentor(s), favorite teachers, fellow research workers, and good friends about the current status of your job search.

Be vigorous in your job hunt, and always show self-confidence, initiative, determination, and a high energy level.  Check out everything, not just the most likely prospects.  As one colleague helpfully explained to me long ago, the time to worry about salary level and which desk you will have is only after you have received a job offer, not before.  Be willing to move if that is required for a job that you know would be good for you.   Be flexible.  Always be 100% honest during interviews, and emphasize how you are well-suited for the particular job opening you are applying for.

If you are looking in unconventional areas or trying to create a new job for yourself, then never limit your imagination.  Try to see more than everyone else does.  One of my own university science teachers retired at age 65 and then took several art courses to learn how to paint.  Within just a few years, her canvasses were selling and she was the featured artist at several shows and galleries in other states.  None of us students ever guessed that she also had a hidden talent as an artist.  She said unconventionally that for her, science and art have many similarities.

Concluding remarks

The main message in Part III is that job seekers with a science PhD should be imaginative and creative, and should not hesitate to consider nontraditional employment possibilities. 

Your main message for this entire series (Parts I-III) is that a PhD in science qualifies you for very many different types of employment, including positions that do not involve laboratory research or working in traditional job sites. 

Dr.M wishes all doctoral scientists much good fortune with their search for a suitable and satisfying job!

 

[1]  Kickstarter, 2014.  Kickstarter – Start a project.  Available on the internet at:  https://www.kickstarter.com/learn?ref=nav .

[2]  Rice, H., 2013.  Crowdfunding, Overview.  The New York Academy of Sciences, Academy eBriefings, October 9, 2013.  Available on the internet at:                        http://www.nyas.org/publications/EBriefings/Detail.aspx?cid=82c4e4b4-f200-49b3-b333-c41e1e2f46aa .

[3]  Schmitt, D., 2013,  Crowdfunding science: could it work?  Higher Education Network, The Guardian, Nov. 11, 2013.  Available on the internet at:                                                        http://www.theguardian.com/higher-education-network/blog/2013/nov/11/science-research-funding-crowdfunding-excellence .

 

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                           UNDER THE WEBSITE TITLE

 

 

OTHER JOBS FOR SCIENTISTS, PART II: RESEARCH JOBS IN INDUSTRY OR GOVERNMENT LABS

Many Jobs are Available for Doctoral Scientists (http://dr-monsrs.net)

Many Jobs now are Available for Doctoral Scientists   (http://dr-monsrs.net)

Commercial industries now employ a very large number of doctoral scientists for their research and development efforts.  The annual total money spent on scientific research and development by all USA industries was almost 300 billion dollars in 2011 [1].  Very large research facilities established and run by the federal government also employ very many doctoral researchers from all branches of science.  New science Ph.D.’s and Postdocs who are seeking their first employment should have a clear understanding of the fundamental differences between researching in industry vs. academia, and in government research centers vs. universities.  These distinctions are discussed in this Part II discourse.

Researching in industrial research and development centers

The goal of industrial research operations usually is to build a new product or to improve some existing commercial offering or process, thereby increasing the profits of that company.  Experimental research areas at each center are highly focused and are selected with regard to their commercial products and activities; they do not involve any wide array of topics.  Company research programs not only provide salaries and benefits, but also furnish money for all equipment, supplies, and other expenses needed in their laboratories.  Provisions for compliance with regulations, environmental protection, health, legal issues and patents, maintenance of facilities, safety and security, waste disposal, etc., usually are done in-house or via contracts with outside operators.  Decisions about key questions for researchers such as what will be investigated, how the experiments will be conducted, how much time can be spent collecting data, who will work on what aspects in the team research effort, when something needs to be patented, and, when a project is completed or must be stopped, all are reviewed and made by research officials and/or company directors.  There is much more emphasis in industrial science operations on obtaining patents, and less pushing for published research reports, than is found at universities.

When university faculty scientists look at industrial research workers, their eyes usually open very widely since some aspects definitely are utterly wonderful (i.e., better salaries and benefits, laboratories with the latest research equipment and a full range of supplies, teams of good coworkers and research assistants, interactions with stable collaborative groups, and, absence of the need to apply for research grants).  On the other hand, this excellent working environment is accompanied by certain problematic aspects; these include that research projects can be stopped by administrative decision, a research worker can be transferred out of a project and inserted into another study at any time, and, some traditional parts of research freedom are missing or restricted (e.g., opportunities to work on a subject of one’s own choosing).  Each company has a different culture and some particular distinctions, so individual young job candidates must always carefully evaluate the respective positive and negative features involved locally.  If an industrial research center needs a doctoral worker in exactly the same area as the researcher’s own personal interest, then that employment can be very wonderful.  Those biomedical and physical research scientists working in industrial laboratories that I have met all seemed very satisfied with their professional careers.

An outspoken essay by Julio Peironcely for new science job seekers recently has appeared on the Next Scientist website and deals with how to find employment in industrial research and development centers (Peironcely, J., 2013.  Leaving academia: How to get a job in industry after your PhD.  Next Scientist, Helping PhD Students Succeed (April, 2013).  Available on the internet at:  http://www.nextscientist.com/job-in-industry-after-your-phd/ ).  This article is very illuminating and provocative, and is highly recommended by Dr.M for all job candidates.

Working in government laboratories and national/regional research facilities

The USA federal government sponsors and supports its own national centers and special facilities for research (e.g., Argonne National laboratory (Argonne, Illinois), Brookhaven National Laboratory (Upton, New York), National Center for Electron Microscopy (Berkeley, California), Pacific Northwest National Laboratory (Richland, Washington), Sandia National Laboratory (Albuquerque, New Mexico), etc.).  The research direction at each of these operations is related to the targets of their governmental sponsor and funding source (e.g., Agricultural Research Service [2], Communicable Diseases Center [3], Department of Energy [4], National Institutes of Health [5], etc.).  Much additional information about all governmental labs, their current research operations, and their different sponsoring federal agencies is available on the internet.  Government labs all are large operations and often participate in “big science” (i.e., working with unique research instrumentation costing millions or billions of dollars); most have valuable programs enabling use of these special facilities by visiting research scientists.

When compared to university research operations, the labs at government research laboratories have many similarities.  The government research centers, just like universities, have huge bureaucracies, very many rules and regulations affecting all research workers, and, all sorts of administrative reviews that gauge research progress.  Doctoral science employees often have job titles and ranks analogous to those at universities.  Both reports in science journals and patents are valued at the government research centers. Amazing wastage of money is easily evident in laboratory operations at both government research centers and universities (see my earlier article in the Money&Grants category on “Wastage of Research Grant Money in Modern University Science”).

One of the biggest differences is the absence of the hyper-competition for research grants (see my recent article in the Money&Grants category on “All About Today’s Hyper-Competition for Research Grants”) at the government laboratories.  This is due to the fact that most of their research activities are funded internally.  However, government centers do have several levels of internal funding, and there is some normal level of internal competition between the different government sites and between the several different research operations at each site.  Another distinctive difference is that graduate students and postdoctoral fellows are found at both universities and federal research centers, but are much more numerous at academic institutions.  Research at government centers generally has more of the flavor of group efforts; individual stars at government research centers usually are associated with group efforts, and these successful scientists often can be given leadership positions at their location.

Concluding remarks

Employment seekers must be realistic and realize that no job is perfect!  Employment at academic science departments, industrial research centers, and government laboratories all have different advantages and disadvantages.  These positive and negative features must be carefully and realistically evaluated before accepting any position.  It always is very valuable to talk frankly to one or more current employees, and to ask about their views on the local positive and negative features; after that, you then must ask yourself, “Do I want to be like this current worker, and will I be personally satisfied with this working situation?”.

The main message from Part II is that many good jobs for doing laboratory research are available at industrial and government facilities, as well as in universities.  I recommend that graduate students and Postdocs wanting to find a job doing experimental lab research should become familiar with all 3 of these different settings for employment as a research scientist.  This will enlarge your available opportunities for finding a supportive working environment.

The forthcoming Part III in this series will be directed to the virtue for young scientists of being more creative and unconventional when seeking to find a suitable employment position.

`

[1]  Wolfe, R.M., National Science Foundation, 2013.  Business R&D performance in the United States increased in 2011. Available on the internet at:  http://www.nsf.gov/statistics/infbrief/nsf13335/ .

[2]  Agricultural Research Service, US Department of Agriculture, 2014.  About us.  Available on the internet at:  http://www.ars.usda.gov/AboutUs/AboutUs.htm .

[3]  Centers for Disease Control and Prevention, 2014.  About CDC Prevention Research Centers.  Available on the internet at: http://www.cdc.gov/prc/about-prc-program/index.htm .

[4]  US Department of Energy, 2014.  The Office of Science Laboratories.  Available on the internet at: http://science.energy.gov/laboratories/ .

[5]  National Institutes of Health, US Department of Health and Human Services, 2014.  About NIH.  Available on the internet at:                      http://www.nih.gov/about/ .

 

 

GO BACK TO HOME PAGE   OR   SCROLL UP TO MENU

                                                            UNDER THE WEBSITE TITLE

 

 

OTHER JOBS FOR SCIENTISTS, PART I: WORKING IN SCIENCE OUTSIDE OF TRADITIONAL SITUATIONS

 

Many Jobs are Available for Doctoral Scientists (http://dr-monsrs.net)

Many Different Jobs now are Available for Doctoral Scientists (http://dr-monsrs.net)

Numerous scientists with a Ph.D. now are employed in university laboratories, but many others work happily outside of academia.  Most doctoral scientists work on research, but others find good jobs completely outside of science.  Traditional and non-traditional employments can be made by choice or of necessity (i.e., at times when research jobs at universities or industrial centers are very hard to find).  By expanding your horizons you will find a greater number of doors that you can knock on.

For anyone with a Ph.D. in science who is trying to find suitable employment, 4 giant questions need to be faced before the job search  begins: (1) do I want to work for myself, or for someone  else, (2) do I want to work at a university, or outside academia, (3) do I want to work on science and research, or on non-science, and, (4) what employment situation suits me best (e.g., business and commerce, communication services, computation and data analysis, legal work, management and administration, military, public service, social services, teaching and tutoring, the arts, etc.)?  A variety of important practical questions also will enter your search for an employment position (e.g., domestic or international job, geographical location, local cost of living, onsite presence of a good friend, salary level, size of the employer, type of facilities, etc.).

This article, which is the first in a series, presents provocative perspectives about how and where modern young scientists can find employment that is good for them as individuals.  It emphasizes that there are many types of positions now available besides those in traditional settings.

Working for oneself

Some doctoral scientists successfully convert their experimental science activities and research interests into a small start-up business.  The nature of these new small businesses is very diverse.  Some self-employed scientists are able to direct their own research investigations and to continue studying what they believe is very important; having their own small business provides the opportunity to escape from the world of research grants and to actually again have fun doing research.  They initially often employ a few associates and technicians to work at their company lab, build their personal fortune, and grow to become a larger business operation.  I personally know one very good doctoral scientist who used his research skills and good creativity to found a small company selling special research kits and reagent supplies; the financial success of his new venture in science has increased his reputation as being a very clever scientist and productive researcher.

Working within universities vs. other sites

Some Ph.D. scientists who do not conduct any laboratory research are employed by universities.   They work full-time as teachers, librarians, or administrators.  Others are able to completely sidestep usual problems for the science faculty by switching to work on the history of science at a specialized university library.  A different possibility for scientists remaining totally dedicated to doing lab research is to work as a “research associate” for a successful faculty scientist; in theory, this job lets someone else worry about research grants and deal with bureaucracies, while you get to have fun at the lab bench and produce professional publications.

Many doctoral scientists today now are more open to working completely outside traditional university-based jobs.  They work in science-related positions at advertising companies, commercial businesses, consultancy agencies, industrial research and development centers, lobbying groups, news and media agencies, private foundations, etc.  These positions all are outside universities, and range from selling or repairing expensive research instruments, to designing commercial advertisements and publicity programs for new pharmaceutical agents, and, to working for a publishing house as an editor and publicist handling science and technology.  Other examples of modern science-related jobs include working on software design for large computation companies dealing with scientific data and various science endeavors (e.g., medical records and regulatory compliance at hospitals, geological surveys for petroleum or minerals by natural resource companies, agricultural monitoring and statistics, etc.).  One should not think that doctoral scientists working outside the lab at science-related jobs must all be losers; I know one cell biologist who published several excellent research reports, but later switched into advertising for a very large pharmaceutical company where she was extremely successful and much more satisfied.  Science-related positions provide the opportunity for doctoral employees to use other skills besides those needed to juggle test-tubes in a lab.

Working outside science

An increasing number of professional employment opportunities for doctoral scientists now are offered in the world of finance.  Some scientists work at investment businesses as analysts who monitor different industries, analyze stock and bond offerings, and evaluate specialized companies with regard to their selection of mutual funds and exchange traded funds.  These doctoral workers can be employed by mutual fund companies, exchange-traded fund businesses, investment advisors and analysts, large investment banks, government agencies, and even private individuals.  A select few of these workers rise to direct a mutual fund in a science-related area (e.g., biotechnology, pharmaceutical industry, nanotechnology) and have become so successful that they are leading stars at their employing investment firm.

Concluding remarks

The main message in Part I is that a Ph.D. in science provides very many employment opportunities besides those traditional faculty jobs at universities. 

I hope that the ideas discussed above will stimulate those doctoral scientists having a difficult time locating suitable employment to form some new thoughts.  Some of the other job situations discussed above offer the opportunity to still conduct lab research studies, while others enable you to use your special knowledge and professional skills in creative and profitable ways completely outside the research lab.  Yet other modern jobs involve working in various science-related activities, but without any laboratory operations.  It pays to keep an open mind when seeking a job!

Part II in this series will discuss doctoral scientists working on experimental lab studies completely outside universities (i.e., in industrial research and development centers, and at government research facilities).

 

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                           UNDER THE WEBSITE TITLE

 

 

ALL ABOUT TODAY’S HYPER-COMPETITION FOR RESEARCH GRANTS

 

Hyper-Competition for Research Grants Stimulates the Decay of Science! (http://dr-monsrs.net)

Hyper-Competition for Research Grants Causes Science to Decay!(http://dr-monsrs.net)

Today, the effort to acquire more research grant funding is first and foremost for university science faculty.  This daily struggle goes way beyond the normal useful level of competition, and thus must be termed a hyper-competition.  Hyper-competition is vicious because: (1) every research scientist competes against every other scientist for grant funding, (2) an increasing number of academic scientists now are trying to acquire a second or third research grant, (3) absolutely everything in an academic science career now depends upon success in getting a research grant and having that renewed, (4) the multiple penalties for not getting a grant renewal (i.e., loss of laboratory, loss of lab staff, additional teaching assignments, decreased salary, reduced reputation, inability to gain tenured status) often are enough to either kill or greatly change a science faculty career in universities, and, (5) this activity today takes up more time for each faculty scientist than is used to actually work on experiments in their laboratory.

This system of hyper-competition for research grant awards commonly causes destructive effects.  I previously have touched on some aspects of hyper-competition within previous articles.  In this essay, I try to bring together all parts of this infernal problem so that everyone will be able to clearly perceive its causation and its bad consequences for science, research, and scientists.

How did the hyper-competition for research grants get started? 

Hyper-competition first grew and increased as a successful response to the declining inflow of money into universities during recent decades (see my recent article in the Money&Grants category on “Three Money Cycles Support Scientific Research”).  The governmental agencies offering grants to support scientific research projects always have tried to encourage participation by more scientists in their support programs, and so were happy to see the resultant increase in the number of applications develop.  Hyper-competition continues to grow today from the misguided policies of both universities and the several different federal granting agencies.

Who likes this hyper-competition for research grants?

            Universities certainly love hyper-competition because this provides them with more profits.  They encourage and try to facilitate its operation in order to obtain even greater profits from their business.  Additionally, universities now measure their own level of academic success by counting the size of external research funding received via their employed science faculty.

            Federal research grant agencies like this hyper-competition because it increases their regulatory power, facilitates their ability to influence or determine the direction of research, and enhances their importance in science.

            Faculty scientists are drawn into this hyper-competition as soon as they find an academic job and receive an initial research grant award.  They then are trapped within this system, because their whole subsequent career depends on continued success with getting research grant(s) renewed.  Although funded scientists certainly like having research grant(s) and working on experimental research, I know that many university scientists privately are very critical of this problematic situation.

What is causing increases in the level of hyper-competition?

             The hyper-competition for research grants, and the resulting great pressure on university scientists, are increased by all of the following activities and conditions.

(1)  The number of applications rises due to several different situations: more new Ph.D.s are graduated every year; many foreign doctoral scientists immigrate to the USA each year to pursue their research career here; universities encourage their successful science faculty to acquire multiple grant awards; the faculty are eager to get several research grant awards in order to obtain security in case one of their grants will not be renewed; and, the research grant system is set up to make research support awards for relatively short periods of time, thereby increasing the number of applications submitted for renewed support in each 10 year period.

                    (2)  Hard-money faculty salaries increasingly depend upon the amount of money brought in by research grant awards, and the best way to increase that number is to acquire additional grants.

(3)  The number of regular science faculty with soft-money salaries is rising.  Since only very few awards will support 100% of the soft-money salary level, this situation necessitates acquiring several different research grants.

(4)  Professional status as a member of the science faculty and as a university researcher now depends mainly on how many dollars are acquired from research grant awards.  The more, the merrier!

(5)  Academic status and reputation of departments and universities now depends mainly on how many dollars are acquired from research grant awards.   The more, the merrier!

(6)  In periods with decreased economic activity, appropriations of tax money sent to federal granting agencies tend to either decrease or stop increasing.  This means that more applicants must compete for fewer available dollars.  In turn, this results in a greater number of worthy awardees receiving only partial funding for their research project; the main way out of this frustrating situation is to apply for and win additional research grants.

What effects are produced by the hyper-competition for research grant awards? 

             It might be thought that greater competition amongst scientists would have the good effect of increasing the quality and significance of new experimental findings, since the scientists succeeding with this system should be better at research.  That proposition is theoretically possible, but is countered by all the bad effects produced by this system (see below).  I believe the funding success of some scientists only shows that they are better at business, rather than being better at science.  I know of no good effects coming from the hyper-competition for research grant awards.

Several different bad effects of hyper-competition on science and research now can be identified as coming from the intense and extensive struggle to win research grant awards.

(1)  Science becomes distorted and even perverted.  Science and research at academic institutions now are business activities.  The chief purpose of hiring university scientists now is to make more financial profits for their employer (see my early article in the Scientists category on “What’s the New Main Job of Faculty Scientists Today?”); finding new knowledge and uncovering the truth via research are only the means towards that end.

(2)  The integrity of science is subverted by the hyper-competition for research grants.  The consequences of losing research funding are so great that it is very understandable that more and more scientists now eagerly trying to obtain a research grant award become willing to peek sideways, instead of looking straight ahead (see my earlier article in the Big Problems category on “Why would any Scientist ever Cheat?”).  There are an increasing number of recent cases known where corruption and cheating arose specifically as a response to the enormous pressures generated on faculty by the hyper-competition for research grant awards (see my article in the Big Problems category on “Important Article by Daniel Cressey in 2013 Nature: “ ‘Rehab’ helps Errant Researchers Return to the Lab”).

(3)  Seeking research grant awards now takes up much too much time for research scientists employed at universities.  This occupies even more faculty time than is used to conduct research experiments in their lab (see my article in the Scientists category on “Why is the Daily Life of Modern University Scientists so very Hectic?”)!

(4)  Because the present research grant system is defective, the identity of successful scientists has changed and degenerated such that several very unpleasant questions now must be asked (e.g., Is the individual champion scientist with the most dollars from research grant awards primarily a businessperson or a research scientist?  Should graduate students in science now also be required to take courses in business administration?  What happens if someone is a very good researcher, but has no skills or interests in finances and business?  Could some scientist be a superstar with getting research grant awards, but almost be a loser with doing experimental research?).

(5)  If ethical misbehavior becomes more common because it is stimulated by hyper-competition , then could “minor cheating in science” become “the new normal”?  Integrity is essential for research scientists, but the number of miscreants seems to be increasing.

(6)  Inevitably, younger science faculty working in this environment with hyper-competition start asking themselves, “Is this really what I wanted to do when I worked to become a professional scientist?” The increasing demoralization of university science faculty is growing to become quite extensive.

            Grantspersonship refers to a strong drive in scientists to obtain more research grant awards by using whatever it takes to become successful in accomplishing this goal (see my recent article in the Money&Grants category on “Why is ‘Grantspersonship’ a False Idol for Research Scientists, and Why is it Bad for Science?”).  Grantspersonship and hyper-competition both are large drivers of finances at universities.   The Research Grant Cycle is based on the simple fact that more grant awards mean greater profits to universities (see my recent article in the Money&Grants category on “Three Money Cycles Support Scientific Research”).  The hyper-competition in The Research Grant Cycle is very pernicious, since the primary goal of research scientists becomes to get the money, with doing good research being strictly of secondary importance.  Grantspersonship sidetracks good science and good scientists.

What do the effects of hyper-competition lead to? 

All the effects of the current hyper-competition for research grant awards are bad and primarily mean that: (1)  science at universities is just another business; (2)  the goal of scientific research has changed from finding new knowledge and valid truths, into acquiring more money; (3)  the best scientist and the best university now are identified as that one which has the largest pile of money; (4)  corruption and dishonesty in science are being actively caused and encouraged by the misguided policies of universities and the research grant agencies; and, (5)  researchers now are being forced to waste very much time with non-research activities.  Hyper-competition thus results in more business and less science, more corruption and less integrity, more wastage of time and money, and, more diversion of science from its true purpose.  It is obvious to me that all of these consequences of hyper-competition are very bad for science, bad for research in academia, and, bad for scientists.

Can anything be done to change the present hyper-competition for research grants? 

The answer to this obvious question unfortunately seems to be a loud, “No”!  The status quo always is hard to change, even when it very obviously is quite defective or counterproductive.  Both universities and granting agencies love this hyper-competition for research grant awards, and this destructive system now is very firmly entrenched in modern universities and modern experimental science.

Big changes are needed in the policies of educational institutions and of federal agencies offering research grants.  Until masses of faculty scientists and interested non-scientists are willing to stand up and demand these changes, there will only be more hyper-competition, more corruption, more wasted time and money, and, more wasted lives.  In other words, science and research will continue to decay.

Concluding remarks

Hyper-competition for research grant awards in universities now dominates the academic life of all science faculty members doing research.  Although it pleases universities and the research grant agencies, this hyper-competition subverts integrity and honesty, changes the goal of scientific research, wastes very much time for faculty scientists, and sidetracks science from its traditional role and importance.

I know that many dedicated scientists on academia accept this perverse condition because they are successful in getting funded and want to stay funded.  Winners in the hyper-competition for research grant awards would not dare to ever give a negative opinion about this system, for fear of losing their blessed status.  They justify their position by stating that they would never cheat, they are too good at their research to ever be turned down for a grant renewal, and their university employer definitely wants them to continue their good research work.  It is sad that many will find out only when it is too late that they are very mistaken and very expendable.

 

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                           UNDER THE WEBSITE TITLE

 

 

HOW DO RESEARCH SCIENTISTS BECOME VERY FAMOUS?

 

How to Win a Supreme Prize in Science! (http://dr-monsrs.net)

What does it take to Win a Big Prize in Science?     (http://dr-monsrs.net)

 

            Not all good research scientists advance to become famous, and almost all famous researchers do not achieve the highest honor of winning a Nobel Prize [1] or a Kavli Prize [2].  These facts make it seem rather mysterious how a scientist does achieve enough renown to be awarded one of those supreme honors.  What is it that makes a research scientist become famous? 

            Working scientists traditionally become acclaimed by their peers (i.e., other scientists in their field of study) primarily on the basis of one or more distinctive characteristics: (1) their experimental  findings achieve a breakthrough in research progress, thereby causing a dramatic shift of direction for many subsequent studies, (2) they resolve a long-standing research controversy, (3) they develop a new theory or concept that comes to have an expanding influence on the work of other researchers, or, (4) they invent and develop a new piece of research instrumentation or a new process for analysis of specimens.  These individuals, unlike the great bulk of ordinary research scientists, seem to have much good luck and are not so perturbed by the usual practical research problems with time and money; in one word, very famous scientists usually appear to be “blessed”.  These generalizations seem true for all the different branches of science, and are valid for scientists in numerous different countries. 

The Biggest Prizes in Science

            Only a very small handful of scientists are awarded the highest honors in science, a Nobel Prize [1] or a Kavli Prize [2].  There are many other famous scientists besides those few winners!  Some scientists are so ambitious that they undertake some of their experimental studies specifically to acquire a big prize; however, winning one of these awards is well-known to partly depend on circumstances beyond their control, such as being in the right place at the right time, succeeding with their research project to produce a widely hoped for result (e.g., creating a cure for some disease), or, working in a large field of study where many other researchers are active.  In addition, it is widely suspected that earning one of these top science prizes also depends upon certain unofficial qualifications, such as who you know, who dislikes you, and what area of science you are working with.  There can be no doubt that the awardees are fully deserving and are great scientists. 

            Readers can gain a much larger understanding about what it takes to win one of these elite honors by viewing some of the many fascinating video interviews with winners on the internet websites for the Nobel Prize (http://www.nobelprize.org/mediaplayer/ ).  These excellent videos examine the life and work of very famous scientists, both in modern times and from the last century.  Other videos present explanations of why their research work was judged to be so very important; corresponding written material is available for the Kavli Prize (http://www.kavliprize.no/seksjon/vis.html?tid=61429 ).  I have personally seen many of these and very highly recommend them to all non-scientists, as well as to younger scientists. 

The Path to Fame and Fortune in Science

            The path to fame and fortune in scientific research often is a progression of steps leading from local to national and then to international renown.  These steps reflect the formation of an enlarging network of other research scientists who are aware of the ambitious scientist, and have respect and admiration for what he or she is doing in the laboratory; eventually, the network expands so that even teachers, students, and various officials all become quite aware of this scientist.  Another mark of progressing towards fame and fortune involves receipt of more and more invitations to speak, to write, and to participate in science events at diverse locations around the world.  This advancement can be recognized by appointments to serve on committees of national organizations and editorial boards for science journals; in addition, progress also is shown by invitations to author review articles, and by receipt of public recognition within descriptive news reports in important general science journals such as Science and Nature.   Professional reputation usually moves in parallel to achievement of these hallmarks. 

            Common signs of success and fame in research scientists are achievement of some breakthrough experiment or invention, enlargement of lab personnel and research budget due to success with the research grant system, and widely acknowledged mastery in one’s field of science.  These hallmarks increase the reputation of research scientists.  For many good scientists, a very wonderful major honor is simply getting their research grants renewed, so they then are no longer required to work only on projects lasting for 3-5 years.  Nobel Laureates often, but not always, have success in dealing with the research grant system.  In addition to all the glory of winning one of the largest science prizes, there also can be some undesired consequences, such as too much attention, too many new demands for time, and, difficulty in maintaining the awardee’s extremely elevated status. 

            With regard to fortune, certain universities are notorious for paying their junior faculty only a very meager salary, but that changes dramatically when they advance in rank.  Professional scientists in academia and industry become financially comfortable, but do not usually consider themselves to really be rich.  Some university scientists do become very wealthy by starting one or more new small businesses centered on their expertise, creativity, and inventions; industrial scientists can receive bonuses for key contributions in enabling some new or improved product to be produced and marketed.  By the time of retirement, scientists usually have good savings and are entitled to full retirement benefits. 

Comments for Non-Scientists about Reputations and Awards

            Non-scientist readers should try to understand that a renowned and very appreciated faculty scientist at a college or small university might be very highly honored locally, and deservedly so, but could have little national renown and no international reputation.  Some other famous scientist working at a prestigious very large university might be more appreciated nationally and internationally, than locally.  My message here is that the amount of “success and renown” is relative; researchers do not have to become a Nobel Laureate or a Kavli Prize awardee in order to be recognized as being a famous and excellent scientist.   

            Some readers will wonder about whether a young scientist could direct all their professional efforts towards winning a big science prize, and succeed in this ambition?  That is possible in theory, but is very, very unlikely in practice.  Even if a researcher earned a doctorate at Harvard, was a Postdoc at Berkeley and Basel, achieved tenure at Columbia University (New York), and was good with both politics and people, there is no guarantee that this scientist will receive one of these very large honors.  There simply are too many unknowns and too many personalities involved to make receipt of a Nobel Prize or Kavli Prize anything other than very uncertain and doubtful.  In fact, some really outstanding research scientists do not receive the supreme award that they so clearly deserve [3].  I believe that it is good for scientists to be ambitious and to strive to win a big prize, but the simple fact is that very few excellent and famous researchers achieve this highest honor.  

 Concluding Remarks

            Many research scientists in academia and industry work very hard to achieve excellence and to be appreciated by their peers, students, and employer, and by the public.  There is no single path to becoming labeled as a famous scientist, and the route always contains many hurdles and frustrations.  When all is said and done, it always is internally satisfying if a mature scientist regards themself as being successful, even if they also have some human defects or run into insurmountable problems.  Self-satisfaction and peer recognition indeed are very big rewards for doing an excellent job in science and research. 

[1]  The Nobel Prize, 2014.  876 Nobel Laureates since 1901.   Available on the internet at:

http://www.nobelprize.org/nobel_prizes/index.html  .

[2]  The Kavli Prize, 2014.  The Kavli Prize – Science prizes for the future.   Available on the internet at:
http://www.kavliprize.no/artikkel/vis.html?tid=27868 .

[3]  E. Westly, 2008.   No Nobel for you: Top 10 Nobel snubs.   Available on the internet at:
http://www.scientificamerican.com/slideshow.cfm?id=10-nobel-snubs .

 

GO BACK TO HOME PAGE   OR   SCROLL UP TO MENU

                                                             UNDER THE WEBSITE TITLE

ALL  ABOUT  SCIENCE MEETINGS

 Scientists Love to Participate in Science Meetings! (http://dr-monsrs.net)

Scientists Love to Participate in Science Meetings!    (http://dr-monsrs.net)

            Just about all scientists happily attend at least one science meeting every year.  Week-long annual gatherings are organized by national science societies.  Since their membership can be large (i.e., many thousands of scientists), these gatherings are a big circus of activities.  The annual USA meeting organized by the Society for Neuroscience attracted an attendance of over 30,000 in 2013 [1].  Both graduate students, Postdocs, professional researchers from academia and industry, and, Nobel Laureates are found among the attendees.  Very general science organizations, such as the American Association for the Advancement of Science [2], also hold large annual gatherings. 

            Yet other types of science meetings have a somewhat different and distinctive character.  International science congresses for various disciplines are held every 2-4 years [e.g., 3,4].  Unlike the national gatherings taking place each year around the world, most international meetings are conducted in English.  For attendees, they offer both a chance to meet and talk to scientists from other countries, and to visit different parts of the world; scientific research truly is a very global endeavor.  Various topical research meetings and technical workshops typically are organized every few years for researchers working in a discrete area of science; often they are centered on a certain subject, specimen, or methodology, and so attract around 25-200 attendees.  These more intimate gatherings are very intense, and are invaluable for having access to unpublished new research findings; I found them to be particularly valuable for witnessing open debates between several scientists, and for getting to personally know colleagues who are actively researching in the same or similar areas.  Publication meetings are organized at irregular intervals for the purpose of summarizing research advances and controversies in some specialized area, and then publishing a book with edited chapters composed by the invited presenters; typical attendance is similar to that of the topical research meetings. 

Where are science meetings held? 

             The answer to this question depends upon how many persons will attend, where are there many scientists residing nearby, what rates are available from hotels or other accommodations, and what are the air transportation facilities.  Meeting management companies will do all of the necessary organizational work for the science societies.  Some larger societies are trapped by their very size, and so can meet only at the same very large convention centers every year.  Other societies meet at a different city each year, which enables attendees to visit many different locales.  Regional groups commonly meet at some central location.  Smaller meetings can be held at universities during the summertime, which enables much lower costs for lodging and conference rooms.  International meetings usually move around the world; this enables attendees to have a wonderful combination of science and vacation pleasures.  Over the years, I have participated in international gatherings at such locations as Kyoto, Hyogo (SPring-8), and Sapporo (Japan), Grenoble and Paris (France), London and Oxford (U.K.), Caxambú and Rio de Janeiro (Brazil), Toronto and Montreal, Canada, Davos (Switzerland), Brno (Czech Republic), and, Cancun (Mexico).  Of course, some international congresses also take place in the USA! 

Who pays for these science meetings? 

            For participation in the yearly national meetings, each attendee pays a registration fee (e.g., at least several hundred dollars) in addition to their annual dues for membership in that science society.  In addition, attendees must pay for their travel and hotels.  All these costs do add up, and have become substantial in modern times, particularly due to the annual rises in travel and registration costs.  Some meetings are able to offer free registration and special rates for accommodations of graduate students and Postdocs.  Many faculty scientists stop attending science meetings unless they are invited to give a presentation, in which case they receive free registration and/or reimbursement for their expenses; the commonly stated rather phony reason for not attending without an invitation is that, “I do not have any extra travel money in my grant(s)!”.  I myself am unusual in this regard, since I have paid my own way to attend some meetings; I feel that I was simply investing in my own research efforts and career. 

What is it that attracts so many scientists to attend science meetings?  

            In general, annual science meetings typically feature: (1) invited special oral presentations by research scientists who are famous leaders in their area of study, (2) contributed brief oral or poster presentations given by members of the society at many different topical sessions , (3) technical workshops about research instrumentation and experimental methodology, (4) roundtable discussion sessions where several well-known scientists have an interchange with each other and the audience about some research controversy or new feature of interest, (5) social events, such as a meeting opener and a banquet, (6) a commercial exhibition by manufacturers of research instruments and supplies, (7) evening cocktail parties with unlimited free alcohol are sponsored by some of the larger commercial concerns and are open to all meeting attendees (i.e., as potential customers), and, (8) opportunities to actually meet and talk with very famous researchers, competitors in your field, and graduate students seeking a suitable postdoctoral position.  Thus, these gatherings are enjoyable, educational, interesting, important, and sometimes inspiring.

            All of the above official activities are valuable, but sometimes can be considered as  being secondary to a variety of certain unofficial meeting activities, including: (1) greeting old friends, such as former classmates and science teachers, (2) conversing with many other research scientists, (3) restaurant dinners sponsored by department chairs or laboratory heads, (4) meeting others who  work on the same research subject as the attendee, and discussing common issues or technical problems, (5) informal social activities, and (6) a chance to see a new geographical location.  Clearly, there always is a lot to do at science meetings, and they constitute a major career enjoyment for many scientists (see my earlier article in the Scientists category on “What is the Fun of being a Scientist?”). 

            Although I have met only one or 2 scientists in my life who dislike going to science meetings, most do so enthusiastically.  The success of annual meetings such as that of the giant Society for Neuroscience is paradoxically lessened by the sheer giant number of attendees; this makes it simply impossible to find certain persons you are eager to talk to, and all the session rooms are utterly packed with other participants.  I thus developed a large preference for the smaller and more personal topical meetings, because: (1) they are much more intense, (2) you can find and converse with everyone else, even Nobel Laureates, (3) the very latest research results in your particular area of interest are presented and discussed, and, (4) everyone participating has a direct or indirect interest in the same research subject(s). 

Are there any science meetings for non-scientists? 

            The answer to this question is a loud “yes!”.  All the larger national and international science meetings have one or more free sessions designed to inform the public about their area(s) of science and recent advances in research.  These special sessions last for 1-3 hours and can be targeted to children, teachers, media reporters, or the general public.  They often feature dramatic videos showing amazing findings and research endeavors, along with explanations for non-scientists about what is being shown.  Usually there is time reserved for questions from the audience. 

            Readers are urged to check on the internet to find out which science meetings will be held nearby, and what free public sessions are scheduled.  I assure all readers that they will be welcomed to participate in these special public sessions designed for non-scientists. 

Concluding Remarks

            I hope this introductory article explains to all readers the important usefulness of professional meetings for scientists.  Please let me know if you have any questions about science meetings via the Comments button below.

 [1]  Society for Neuroscience, 2013.  Neuroscience 2013 attendees share science from around the globe.  Available on the internet at:  http://www.sfn.org/news-and-calendar/news-and-calendar/news/annual-meeting-spotlight/neuroscience-2013-spotlight/neuroscience-2013-attendees-share-science-from-around-the-globe .

[2]  American Association for the Advancement of Science (AAAS), 2014.  2015 annual meeting.  Available on the internet at:  http://www.aaas.org/AM2013 . 

[3]  Czechoslovak Microscopy Society, and, International Federation of Societies for Microscopy, 2014.  18th International Microscopy Congress, 2014, Prague, Czech Republic.Available on the internet at:  http://www.imc2014.com/ . 

[4]  XII International Conference on Nanostructured Materials, Moscow, Russia, 2014.  NANO 2014.  Available on the internet at:  http://www.nano2014.org/ . 

 

   GO BACK TO HOME PAGE   OR   SCROLL UP TO MENU

                                                          UNDER THE WEBSITE TITLE

INDIVIDUAL WORK VERSUS GROUP EFFORTS IN SCIENTIFIC RESEARCH

Individual Researchers versus Group Efforts in Science (http://dr-monsrs.net)

Individual Researchers versus Group Efforts in Science   (http://dr-monsrs.net)

Ultimately, progress in science depends upon the work of many individual scientists.  Even where important new concepts or dramatic new research advances arise over a long period of time, one individual researcher with insight, determination, and innovation usually has a central role.  The importance of individuals as investigators and inventors in modern science becomes very obvious when the career efforts of certain giants in research are examined; new readers should refer to my earlier articles briefly presenting Thomas A. Edison and Nikola Tesla (see article in the Basic Introductions category on “Inventors & Scientists”), and, Edwin H. Land (see article in the Essays category on “Curiosity, Creativity, Inventiveness, and Individualism in Science”).  All 3 of these renowned researchers were extraordinary individuals, both in science and in life.  It is interesting to note that when these 3 continued their pioneering experimental studies and commercial innovations, all formed large research groups so as to be able to carry out their many complex and extensive research activities. 

Any one individual scientist can only conduct and complete a few experimental studies in a given year of time.  To really be able to work to a larger extent, more than 2 hands are needed!  The simplest way to do this is to win a research grant that pays for salaries of technicians, graduate students, and Postdocs.  Another good approach is to form research groups.  Research scientists often associate with others for collaborative studies, either informally or formally.  Small successful research groups easily can grow larger.  For the complex and more extensive research work needed by projects in Big Science (i.e., the Manhattan Project during WW2 [1,2], and the projects of NASA in space research [3], are typical examples of Big Science), very large groups of research scientists are essential. 

Research groups of any size have certain general advantages over isolated individual scientists: (1) larger financial resources, (2) more lab space, (3) more brains, (4) more hands, (5) better ability to apply multiple approaches to any one project, (6) more flexibility, (7) greater efficiency of effort, and, (8) increased productivity.  This essay examines the general roles of individuals and of groups for working in scientific research. 

Individual Scientists and Small Research Groups

The early research scientists all were very strongly individualistic.  Classical science recognized that individual researchers are the primary basis for creativity, new directions, inventions, and research breakthroughs; this has not changed even in today’s science.  For research conducted in universities, one still finds many individual scientists pursuing good laboratory projects.  However, with the modern system for grant-supported research studies, an increasing number of individual scientists now are moving their experimental investigations into group efforts.  Small research groups in universities typically have around 5-20 members and staff (i.e., faculty collaborators on the same campus, faculty collaborators and visitors from other universities, graduate students, postdoctoral research associates, research technicians, etc.); small groups typically work within several laboratory rooms.  At the other end of the scale are giant research groups working under one Director, having over 100 scientists and research staff, and, occupying several floors or even an entire separate building.  Some medium- and large-sized research groups fill the interval between the small and giant associations. 

For studies in industrial research and development (R&D) laboratories, both individual scientists and various research groups are utilized.  Individual doctoral researchers often function as leaders or specialized workers in small or large groups.  Larger groups in industrial research often extend between different divisions and locations of the company.  Several or many small industrial research groups can be networked into extensive research operations in different states, nations, and continents.   Since many research efforts in industry pursue coordinated applied research and engineering studies targeted towards specific new or improved products, group activities are very appropriate for these R&D operations.

Large and Giant Research Groups

Since success breeds more success, there is a general tendency in universities for flourishing small groups to become larger.  All large research groups have greater capabilities for producing extensive results within a shorter period of time.  They also minimize the impact of the hyper-competition for research grants upon most members within the group, since one large award or several regular awards provide for the group’s experiments.  In academia, one even can find some entire science departments where almost all faculty members, other than those working exclusively with teaching, are organized to function as a single large research unit. 

In very large groups of researchers, group-think often becomes usual.  Most decisions are already made and each worker generally is concerned only with their small area of personal work.  Thus, individualism of everyone except The Director is squelched.  In many cases, the role of doctoral scientists within the large and giant groups at universities devolves into serving only as very highly educated research technicians.  The Big Boss is happy when everyone does their assigned tasks well, and thus there is little need for any individual input, creative new ideas, questions about alternatives, or self-development.  In my view, this group-think situation is very consistent with the new trend for academic science to now be just a commercialized business entity (see my earlier article in the Big Problems category on “What is the Very Biggest Problem for Science Today?”).  One can even think here about an analogy of giant research groups to the assembly lines of commercial manufacturers; indeed, giant groups operating in universities commonly are referred to by other scientists as being research factories.  In those factories, it is doubtful that the Big Boss even can recall the names of all the many individual scientists working there. 

Nevertheless, giant groups can achieve notable successes in scientific research.  As described above, they also have some disadvantages for lab research studies.  It seems to me that the Chief Scientist in a research factory mostly functions for expert planning, integrating the many different experiments and diverse results into a cohesive whole, and, shielding all group members from the distractions of dealing with the research grant system and bureaucracies; these activities all are both difficult and important for research progress, and, therefore are deserving of praise. 

Small versus Large Research Groups

 Each of the differently sized environments for laboratory research at universities has both advantages and disadvantages.  The degree of positive or negative features for any given research endeavor must be evaluated in order to determine which situation is best.  It seems obvious that the different group situations will appeal to different types of personalities, and will be more productive for certain kinds of research studies.  Most of the classical and modern breakthroughs in scientific research have been brought forth by individuals or small research groups, and not by large or giant groups.  Research scientists working today as individuals in academia usually are dedicated to highly specialized niche studies, and are extremely careful to select a subject for their research which has no likelihood of competing with investigations of any large research group.  Such competition would be the instant kiss-of-death for any individual scientist, since it would be analogous to one mouse attempting to outdo a huge grizzly bear. 

 I have always researched as an individual scientist, whether all by myself or in a small group.  I also have known several other scientists in academia who were both very productive and quite happy to work within very large groups.  I view small research groups as being mostly good, but large and giant groups often seem problematic with regard to creativity and individualism; these qualities are vital for the success of scientific research (see my recent article in the Essays category on “Curiosity, Creativity, Inventiveness, and Individualism in Science”). 

The large federal agencies offering research grants now seem to favor giving awards to larger groups.  This probably is done because those groups always provide a much, much firmer likelihood that all their proposed studies will progress as planned, everything will be completed on time, and the anticipated research results will be validated by the “new” experimental data.  Interestingly, these capabilities often come about because the giant research operations actually conduct, analyze, and finish all the planned studies during the period of their last funding; thus, any of their proposed experiments and anticipated results can be almost guaranteed.  Small groups and individual researchers simply are not able to do that, and therefore their proposals always seem somewhat chancier to evaluators of grant applications. 

With the present hyper-competition for research grants at universities, very large groupshave the easy capability to completely overrun everyone else.  They can very easily pick up any new study, start researching immediately, and, complete everything in a much shorter time period than could any individual scientist or small group.  The overwhelming strength of very large research groups necessarily has an inhibiting influence on individuals and small groups; this seems to be the price that must be paid for obtaining the beneficial functional advantages and strong output of larger research groups.  Even some brilliant individual scientist inevitably will find that they are at a strong disadvantage if they directly compete with large research groups for funding of a similar experimental project.

Concluding Remarks

Small research groups often form naturally in universities.  As soon as several individual faculty scientists in one or several departments discover that they have some common research interests, new small group efforts often can arise.  Scientists love to talk and argue with other scientists, and this often encourages the formation of these smaller associations.  Small groups can retain many of the advantages of single research scientists, along with having some of the good characteristics of large research groups.  However, successful small research groups must try to avoid growing too much, such that they do not acquire the negative features of very large research groups; successful small groups should recognize that growing into a much larger research group will not necessarily make the former better. 

 Smaller research groups can be viewed ass hybrids having some of the advantageous features of both individual researchers and giant research groups.  Small groups thus seem to me to be a very good model for the organization of future university research activities in science.

[1]  Los Alamos Historical Society, 2014.  Manhattan Project.  Available on the internet at:  http://www.losalamoshistory.org/manhattan.htm . [2]  U.S. History, 2014.  51f.  The Manhattan Project.  Available on the internet at:  http://www.ushistory.org/us/51f.asp . [3]  NASA Science, National Aeronautics and Space Administration, 2014.   Science@NASA.    Available on the internet at:   http://science.nasa.gov/.

  GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                          UNDER THE WEBSITE TITLE

 

WHY IS “GRANTSPERSONSHIP” A FALSE IDOL FOR RESEARCH SCIENTISTS, AND WHY IS IT BAD FOR SCIENCE?

 

Grantsperonship in 2014! (http://dr-monsrs.net)

 

            With research grants now being so all-important for university science faculty conducting experimental research, skills and good tactics with acquiring these awards have become especially valued.  For getting research grant awards, there can be no question that some doctoral scientists are very much more successful than many others.  The reasons why and how some are more successful are hard to pin down, but it is commonly said that they have more or better understanding about exactly how the research grant system works.  Grantspersonship, formerly referred to as grantsmanship or grantswomanship, is the use of applied psychology, business skills, cleverness, manipulations, sophistry, unconventional approaches, and whatever-it-takes to win a research grant award.  Tactics for acquiring research grant awards are not explicitly taught during the graduate school education of most professional scientists; instead, they are learned and incorporated by the emulation of those having more successful results in dealing with the current research grant system. 

            I have already introduced the hyper-competition by university scientists for research grants (see earlier article in the Scientists category on “Why Would Any Scientist Ever Cheat?”).  In the present condition, grants are everything, everyone is competing with everyone else, and failure to get a new grant or a renewal easily can be the kiss-of-death for university scientists.  Far too many modern faculty scientists have had personal experience with having their research grant applications being turned down or receiving evaluation scores such that they only will receive awards for partial funding.  Many grant-supported university scientists now are trying hard to get a second research grant, in order to (1) obtain additional laboratory space, (2) undertake an additional research project, (3) receive some security in case their first research project does not receive a renewal award, and (4) increase their status and salary.  Of course, these efforts also greatly increase the hyper-competition.  The time and emotional effort needed for this infernal hyper-competition is enormous and detracts from the ability of any scientist to personally conduct research experiments in their lab (see my earlier article in the Scientists category on “What’s the New Main Job of Faculty Scientists Today?”).  Accordingly, very many university faculty scientists indeed would love to obtain more success by increasing their level of grantspersonship. 

            Using grantspersonship to become more successful seems justified to many scientists at modern universities, since obtaining research grant awards is so very important for their career.  Increasing one’s grantspersonship indeed can produce more funding success, but also readily results in several bad effects.  At its worst, some scientists engage in corrupt and unethical practices (see my recent article in the Big Problems category on “Why is it so Very Hard to Eliminate Fraud and Corruption in Scientists?”).  Even if remaining completely honest, researchers using grantspersonship become sidetracked from their aims in being a scientist. 

             Applications for research grants should be judged on the basis of objective evaluations for merit (i.e., having the best approach to answer an important research question and/or more effectively investigate a needed topic), capabilities of the scientist (i.e., adequate background and previous experience, a record of producing important  publications, availability of the necessary facilities and required policies, etc.), compatibility with program objectives of the granting agency, good performance with previous awards, etc.  The use of grantspersonship subverts these traditional criteria, and substitutes inappropriate, irrelevant, and subjective considerations into the evaluation of applications for funding (e.g., association with a given institution, ethnicity, personal friendships, personal interactions with agency officials, professional relationships, professional status, publications in a certain journal, etc.).  All of this subversion of objective evaluations is bad for science. 

 What makes Grantspersonship Wrong?  How does Grantspersonship have Negative Effects on Science? 

            Although grantspersonship appears to be universally accepted today, few have ever examined what are its effects upon scientific research.  The concept of grantspersonship commonly is seen as the application of business skills to science; it deals with obtaining money, and has only an indirect connection to the production of good research.  There is no obvious reason to think that either most very acclaimed great research scientists could simultaneously also be outstandingly adept businesspersons, or, that the presidents of giant multinational corporations could also win a Nobel Prize for their lab research studies.  Business is fundamentally different from scientific research!

113 thoughts on “PAGE on SCIENTISTS:

  1. I really do accept as true with all the ideas you could have made available inside your article. They can be extremely persuasive and may absolutely get the job done. Even now, the actual articles are extremely short for newbies. May you please prolong these folks a bit coming from future moment? Basically post.

  2. I am curious to find out what blog system you have been using?
    I’m having some minor security issues with my latest website and I would like to find something more secure.
    Do you have any recommendations?

  3. Every weekend i used to pay a visit this web page, because i want enjoyment, since this this web site conations actually good funny data too.

  4. This is really fascinating, You are an excessively skilled blogger.
    I have joined your feed and sit up for seeking more of your excellent post.
    Also, I’ve shared your site in my social networks

  5. Awesome website you have here but I was curious about if you
    knew of any discussion boards that cover the same topics
    discussed in this article? I’d really love to
    be a part of community where I can get advice from other experienced
    people that share the same interest. If you have any recommendations, please
    let me know. Bless you!

  6. Nice post. I used to be checking constantly
    this weblog and I’m inspired! Extremely helpful info
    specifically the final section 🙂 I take care of such info much.
    I used to be looking for this certain information for a very long time.
    Thank you and best of luck.

  7. Greetings I am so thrilled I found your blog, I really found you by accident, while
    I was looking on Bing for something else, Anyhow I am here
    now and would just like to say thanks a lot for a tremendous
    post and a all round thrilling blog (I also love the theme/design), I don’t
    have time to read through it all at the moment but I have book-marked it and also added your
    RSS feeds, so when I have time I will be back to read much
    more, Please do keep up the awesome work.

  8. A motivating discussion is worth comment. I think that you should write more
    on this issue, it may not be a taboo matter but usually people don’t speak about
    such issues. To the next! Kind regards!!

  9. I’m gone to inform my little brother, that
    he should also pay a quick visit this blog on regular basis to get updated
    from latest news.

  10. I really love your website.. Excellent colors & theme.
    Did you create this web site yourself? Please reply
    back as I’m looking to create my own website and would like to find out where you got
    this from or just what the theme is called. Many thanks!

  11. Thanks for ones marvelous posting! I seriously enjoyed
    reading it, you are a great author.I will remember to bookmark your blog and will often come back from now on.
    I want to encourage one to continue your great work, have
    a nice morning!

  12. When I initially left a comment I appear to have clicked the -Notify me when new comments are added-
    checkbox and now whenever a comment is added I get 4 emails with the same comment.

    Perhaps there is a means you can remove me from that service?
    Many thanks!

  13. I am in fact pleased to glance at this weblog posts which includes plenty of useful data, thanks
    for providing these kinds of data.

  14. Have you ever considered publishing an e-book or guest authoring on other sites?
    I have a blog based on the same ideas you discuss
    and would love to have you share some stories/information.
    I know my audience would appreciate your work. If you are even remotely interested, feel free to send me an email.

  15. Thank y,ou for the suggestion, FB, but I do not agree that your website is on the same ideas as mine! Maybe you should just recommend they stop in here to see what is happening?

    Dr.M

  16. Good day I am so excited I found your webpage,
    I really found you by mistake, while I was browsing on Google for something else, Regardless
    I am here now and would just like to say thanks a lot for a
    marvelous post and a all round interesting blog (I also love the theme/design), I don’t have time to look over it all at
    the moment but I have bookmarked it and also added in your RSS feeds,
    so when I have time I will be back to read a great deal more, Please do
    keep up the awesome job.

  17. Excellent post. Keep writing such kind of info on your blog.
    Im really impressed by your site.
    Hello there, You have done an incredible job. I will certainly digg
    it and for my part recommend to my friends. I am confident they’ll be
    benefited from this website.

  18. Hi there! Someone in my Facebook group shared this site with us so I came to take a look.
    I’m definitely enjoying the information. I’m bookmarking
    and will be tweeting this to my followers! Terrific blog and
    superb style and design.

  19. There are no subscriptions, Qual, but you can simply check back here once each week to see the latest!

    Dr.M

  20. hi!,I love your writing very much! share we keep in touch more about your article on AOL?

    I need an expert on this area to resolve my problem. Maybe that is you!
    Looking forward to see you.

  21. I really like what you guys tend to be up too. This type of clever work and coverage!
    Keep up the fantastic works guys I’ve included you guys to my personal blogroll.

  22. I like the helpful info ʏou provide iո ƴoսr articles.
    Ӏ’llbookmarkyour blog аnd check aǥain hеre frequently.

    I am ԛuite certain I will learn a lott оf ոew stuff гight hегe!
    Good luck fоr thee next!

  23. Very nice post. I just stumbled upon your blog and
    wished to say that I’ve truly enjoyed browsing your blog posts.
    After all I’ll be subscribing to your feed and I hope you write again very soon!

  24. I just want to say I’m new to blogging and site-building and seriously savored this blog. Likely I’m planning to bookmark your blog . You surely have terrific writings. Thanks a bunch for revealing your website page.

  25. I think other web-site proprietors should take this site as an model, very clean and excellent user genial style and design, let alone the content. You’re an expert in this topic!

  26. Somebody essentially assist to make seriously articles I might state. This is the first time I frequented your website page and to this point? I amazed with the analysis you made to create this actual put up incredible. Great activity!

  27. I keep listening to the news broadcast talk about getting free online grant applications so I have been looking around for the finest site to get one. Could you tell me please, where could i get some?

  28. Usually I don’t read post on blogs, however I wish to say that this write-up very pressured me to try and do it! Your writing style has been surprised me. Thanks, quite great article.

  29. Thank you a lot for giving everyone a very breathtaking opportunity to discover important secrets from this website. It is always so pleasurable plus full of fun for me and my office colleagues to visit your web site on the least 3 times per week to study the fresh items you will have. And of course, I am always pleased for the breathtaking creative ideas served by you. Selected two points in this post are indeed the most impressive I have ever had.

  30. Your question is not clear, Study! If you want forms, just check with the different granting agencies; if you seek online only, check with internet search engines. And, I must also state, that NOTHING is free!!

    Dr.M

  31. I think other web site proprietors should take this website as an model, very clean and excellent user friendly style and design, as well as the content. You’re an expert in this topic!

  32. This is really interesting, You’re a very skilled blogger. I’ve joined your rss feed and look forward to seeking more of your great post. Also, I have shared your web site in my social networks!

  33. Very nice post. I just stumbled upon your blog and wished to say that I’ve truly enjoyed surfing around your blog posts. After all I will be subscribing to your rss feed and I hope you write again very soon!

  34. Might be practically unattainable to see well-informed viewers on this matter, however, you seem like you understand the things you’re preaching about! Cheers

  35. I just need to advise you the fact that I’m just novice to putting up a blog and incredibly loved your review. Probably I am likely to store your post post . You seriously have memorable article content. Appreciate it for giving out with us your domain document.

  36. Hey there! I’m at work surfing around your blog from my new iphone 3gs! Just wanted to say I love reading through your blog and look forward to all your posts! Keep up the excellent work!

  37. Howdy! I just want to give you a huge thumbs up for your great information you have right here on this post. I’ll be returning to your web site for more soon.

  38. Thanks for your own labor on this website. My daughter delights in doing investigations and it’s obvious why. I know all concerning the powerful form you make useful guides by means of this web blog and as well boost response from the others about this area plus our favorite child is in fact studying so much. Have fun with the rest of the year. You’re performing a fabulous job.

  39. It truly is almost close to impossible to come across well-informed americans on this issue, however , you come across as like you realize exactly what you’re preaching about! Regards

  40. Your style is unique compared to other folks I have read stuff from. Thanks for posting when you have the opportunity, Guess I will just book mark this site.

  41. I’m impressed, I must say. Definitely rarely do I encounter a weblog that’s both educative and entertaining, and devoid of a doubt, you could have hit the nail within the head. Your notion is outstanding; ab muscles something which insufficient persons are speaking intelligently about. We’re extremely content that I identified this in my look for out something with this.

  42. I simply desired to thank you so much yet again. I’m not certain the things I might have done without the actual tricks provided by you relating to such industry. This was an absolute depressing dilemma in my circumstances, but being able to view the skilled avenue you managed it made me to cry for delight. I will be happier for your information and thus sincerely hope you know what an amazing job you are always doing educating the others via a web site. I’m certain you’ve never encountered all of us.

  43. I would like to thnkx for the efforts you have put in writing this site. I’m hoping the same high-grade blog post from you in the upcoming as well. In fact your creative writing abilities has inspired me to get my own site now. Really the blogging is spreading its wings fast. Your write up is a great example of it.

  44. Thank you for the weblog post. Velupe and I come about to become saving for our new ebook on this topic and your writing has created us to conserve the cash. Your notions truly answered all our concerns. In reality, more than what we had acknowledged before when we came across your remarkable blog. I in fact no longer nurture doubts in conjunction with a troubled mind mainly because you definitely attended to all of our demands right here. Thanks

  45. Hi there, You’ve done an excellent job. I’ll certainly digg it and individually recommend to my friends. I am confident they will be benefited from this site.

  46. Right after study a number of the blogs on your website now, and that i definitely just like your method of blogging. I bookmarked it to my bookmark webpage list and can be checking back soon. Pls contemplate my web site at the identical time and make me aware what you take into account.

  47. I, for my friends inside the class, wish to express our personal thanks for the actually wonderful secrets revealed through your short article. Your personal clear explanation assisted bring comfort and optimism to all of us and would definitely actually aid us in a analysis we are at this time accomplishing. I believe if still come across internet pages like yours, my own keep in college is an straightforward one. Thanks

  48. My spouse and I stumbled over here different web address and thought I should check things out.
    I like what I see so now i’m following you. Look forward to looking into your
    web page for a second time.

  49. I’m amazed, I have to admit. Seldom do I come across a blog
    that’s both educative and interesting, and without a doubt,
    you’ve hit the nail on the head. The problem is an issue that not enough folks are speaking intelligently about.
    I’m very happy I stumbled across this in my hunt for something concerning
    this.

  50. It’s actually a nice and helpful piece of info. I’m happy that you shared this useful information with us. Please keep us informed like this. Thank you for sharing.

  51. Hello my friend! I wish to say that this post is awesome, nice written and come with approximately all significant infos. I would like to see more posts like this .

  52. We stumbled more than right here by a various web page and believed I may possibly examine factors out. I like what I see so now i’m following you. Look forward to locating out about your net page to get a second time.