Tag Archives: DNA

DRAMATIC VIDEOS ABOUT SCIENTISTS AND SCIENCE! 

 

What does it take to become a famous scientist? (http://dr-monsrs.net)
What does it take to become a famous scientist?   (http://dr-monsrs.net)

 

The internet makes numerous videos about famous scientists available to all.  I have already recommended some as part of a group of biographical dispatches about the life of several renowned scientists (e.g., see:  “Scientists Tell Us About Their Life and Work, Part 8” ).  Many good videos showing interviews with awarded researchers are contained in the websites for the Nobel Prize  and the Kavli Prize ; these feature both their modern and older prizewinning scientists working in many different fields of science.  Here, I recommend a few fascinating videos about research scientists to get you started!

ANCIENT RESEARCH:  “How simple ideas lead to scientific discoveries” (https://www.youtube.com/watch?v=F8UFGu2M2gM ) is nicely presented by Adam Savage and features several amazing examples of excellent scientific research in ancient times.  Very informative and interesting!

RADIOACTIVITY AND FINDING NEW ELEMENTS:  “Marie and Pierre Curie (50 – Video special)”  (https://www.youtube.com/watch?v=82Oj5qyY1F0 ) explains how these 2 European research scientists overcame many difficult problems in life and career to conduct investigations about the nature of radioactivity and to discover 2 new elements.  Modern scientists clearly are usually less dedicated and determined to working at research than were the Curie’s!  A delightful and inspiring video presentation!

DNA:  “(RARE) Interview with James Watson and Francis Crick” (https://www.youtube.com/watch?v=NGBDFq5Kaw0 ) shows a 1993 interview with the co-discoverers of DNA structure, Watson and Crick.  Both these extremely famous scientists speak with candor about their lives, careers, personalities, and science, including their current views about controversies and misunderstandings of events.  Bravo!

MATERIALS SCIENCE:  “Being a materials scientist at NASA Ames Research Center – Dr. Bin Chen Interview” (https://www.youtube.com/watch?v=VFOpYnRvsBE ) presents the life and research work of Dr. Bin Chen, a Principal Scientist at a NASA Center in California.  She presents very forthright answers about her education and earlier life in China, being a postdoc in the U.S., and finding a good job; her understanding of what it takes to be a research scientist is very similar to mine, and will be valuable watching for youngsters wondering about going into science.  Terrific!

NANOTECHNOLOGY AND MOLECULAR ENGINEERING:  “Bionanotechnology – New frontiers in molecular engineering: Andreas Mershin at TEDxAthens” (https://www.youtube.com/watch?v=sjV7NNwm1GU) shows a young research scientist dramatically describing what he does in research and how he does it (2013).  This is an excellent exposition for non-scientists and deals with a very current research approach, but unfortunately many slides are not enlarged for the video; viewers might want to interrupt the video to enlarge each of those.

Discussion! 

These videos vividly illustrate how: (1)  even the most renowned scientists really are just people, (2) ancient scientists successfully conducted important research investigations without having modern instruments and laboratory facilities, (3) all scientists are stimulated by curiosity and imagination, and, (4) persistent determination and dedication are extremely significant to achieve good results with scientific research.

Concluding remarks! 

These 5 recommended videos are just a small sample of what is available!  Please go ahead and find some other internet videos about scientists that deal with whatever interests you!  Have much fun exploring and learning!

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU UNDER THE WEBSITE TITLE

 

SCIENTISTS TELL US ABOUT THEIR LIFE AND WORK, PART 8

 

Quotations by Prof. Nadrian (Ned) C. Seeman (from pages 20 and 23 of his Living History essay in ACA RefleXions, American Crystallographic Association, Summer 2014, Number 2, pages 19-23)
Quotations by Prof. Nadrian (Ned) C. Seeman (from pages 20 and 23 of his Living History essay in ACA RefleXions, American Crystallographic Association, Summer 2014, Number 2, pages 19-23)

 

In this series, I am recommending to you a few life stories about real scientists.  I prefer to let these scientists tell their own stories where possible.  Autobiographical accounts are interesting and entertaining for both non-scientists and other scientists.  My selections here mostly involve scientists I either know personally or at least know about.  If further materials like this are needed, they can be obtained readily on the internet or with input from librarians at public or university libraries, science teachers, and other scientists.

In the preceding segment of this series, the story of a very celebrated basic research scientist working on Protein Dynamics in Cell Biology was recommended (see “Scientists Tell Us About Their Life and Work, Part 7”).  Part 8 presents the life story of a research scientist who dreamed up and established an amazingly novel new branch of chemical engineering based upon the well-known double-helix of DNA.

Part 8 Recommendations:  NEW NANOSTRUCTURES BASED ON DNA

Prof. Nadrian (Ned) C. Seeman (1945 – present) originated several new fields of science and engineering: DNA Nanotechnology, DNA-Based Crystallography, and DNA-Based Computation.  His very creative investigations and innovative new concepts for “Structural DNA Technology” often were developed for practical applications (e.g., better production of highly ordered macromolecular crystals, nanocomputation, nano-electronics, nanomedicine, and nanorobotics); thus, he is both a basic and an applied researcher.  All of his dramatic innovations and unusual research topics are based on the structure and properties of DNA.  Numerous other research labs around the world now also are working with DNA-based nanostructures.

DNA is known to most as the double-stranded genetic material making up chromosomes.  The binding between each of the 2 associated strands takes place by specific pairing between their individual nucleotide bases; this binding is very specific and fairly strong.  In the laboratory, segments of synthetic single-stranded DNA can be  hybridized (reassociated) to form new double-stranded DNA; branch points and unpaired base sequences at the termini can be produced as desired, and are key points of technology for using DNA to produce new nanostructures.  Seeman developed and used these characteristic features from the early 1980’s to form self-assembled DNA polygons, and, 2-D and 3-D lattices; subsequently, he went on to invent nanomechanical devices (e.g., synthetic computers, robots, translators, and walkers), and other nanostructures (e.g., superstructures of DNA associated with other species, and nano-assembly lines).  In 2004-5, he was the founding president of a new professional science association, the International Society for Nanoscale Science, Computation and Engineering (see:  http://isnsce.org/ ).

Seeman’s unconventional research involves unique combinations of biochemistry, biophysics, chemical engineering, computer science, crystallography, nanoscience and nanotechnology, structural biology, and, thermodynamics.  His creative ideas and amazing lab studies for making new nanostructures involve both theory and practice, and are also being used to advance scientific knowledge and understanding about the biophysics of intermediates in the recombination of chromosomal DNA during its replication.

Prof. Seeman chairs the Department of Chemistry at New York University.  He has received many honors for his pioneering research, including the Sidhu Award from the Pittsburg Diffraction Society (1974), a Research Career Development Award from the National Institutes of Health (1982), the Science and Technology Award from Popular Science Magazine (1993), the Feynman Prize in Nanotechnology (1995), and the Nichols Medal from the NY Section of the American Chemical Society (2008).  He is an elected member of the Norwegian Academy of Science and Letters, a Fellow of the Royal Society of Chemistry (U.K.), and holds an Einstein Professorship from the Chinese Academy of Sciences.  In 2010, Prof Seeman and Prof. Donald Eigler (IBM Almaden Research Center, San Jose, California) were jointly honored as awardees of the Kavli Prize in Nanoscience [1]; also see the photo of these 2 awardees receiving their Kavli Prize from H. M. King Harald of Norway [2].  Seeman is without question an embodiment of what Dr.M wrote about in an earlier essay on the significance of curiosity, creativity, inventiveness, and individualism in science (see:  http://dr-monsrs.net/2014/02/25/curiosity-creativity-inventiveness-and-individualism-in-science/ ).

[1]  Kavli Foundation, 2010.  2010 Kavli Prize in Nanoscience.  Available on the internet at:
http://www.kavlifoundation.org/2010-nanoscience-citation .

[2]   Kavli Foundation, 2010.  The Kavli Prize in Nanoscience (2010).  Available on the internet at:  http://registration.kavliprize.org/seksjon/vis.html?tid=27454 .

Lots of interesting information about Prof. Seeman is displayed on his laboratory home page (see: http://seemanlab4.chem.nyu.edu/ ).  My recommendations (below) start with Seeman’s own explanation of his research in DNA Nanotechnology, as written for non-scientists (1A).  For working scientists, his review article provides a stimulating overview (1B).  The second recommendation (2) is an official summary of why Seeman and Eigler were selected for the Kavli Prize in Nanoscience in 2010.  The third item is Prof. Seeman’s personal description about his own career in science (3), and is filled with stories and anecdotes about both his difficulties and his triumphs; all readers will find this to be a very fascinating account.  Dr.M considers that essay to be extraordinary, since it is probably the most unusually forthright and outspoken piece ever authored by a modern scientist.

(1A)  Seeman, N. C., 2004.  Nanotechnology and the double helix (preview).  Scientific American  290:64-75.  Available on the internet at:
 http://www.scientificamerican.com/article/nanotechnology-and-the-double-helix .

(1B)  Seeman, N. C., 2010.  Nanomaterials based on DNA.  Annual Review of Biochemistry  79:65-87.  Available on the internet at:
http://www.annualreviews.org/doi/pdf/10.1146/annurev-biochem-060308-102244 .

(2)  Kavli Foundation, 2010.  2010 Nanoscience Prize explanatory notes.  Available on the internet at:
http://www.kavlifoundation.org/2010-nanoscience-prize-explanatory-notes .

(3)  Seeman, N. C., 2014.  The crystallographic roots of DNA nanotechnology.  ACA RefleXions, American Crystallographic Association, Number 2, Summer 2014, pages 19-23.  Available on the internet at: http://www.amercrystalassn.org/documents/2014%20newsletters/Summer%202014%20WEB.pdf .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                            UNDER THE WEBSITE TITLE

SCIENTISTS TELL US ABOUT THEIR LIFE AND WORK, PART 5

 

Quote from the 1993 Nobel Prize Lecture in Chemistry by Kary Banks Mullis

Quote from the 1993 Nobel Prize Lecture in Chemistry by Kary Banks Mullis

 

In this series, I am recommending to you a few life stories about real scientists.  I prefer to let these scientists tell their own stories where possible.  Autobiographical accounts are interesting and entertaining for both non-scientists and other scientists.  My selections here mostly involve scientists I either know personally or at least know about.  If further materials like this are needed, they can be obtained readily on the internet or with input from librarians at public or university libraries, science teachers, and other scientists.  In the preceding segment of this series, the life story of a world-renowned research scientist working in Experimental Pathology & Cell Biology was recommended (see “Scientists Tell Us About Their Life and Work, Part 4”).  Part 5 presents the adventures of an energetic individualist whose creative scientific research enabled the molecular genetics revolution to take place in biology and medicine.

Part 5 Recommendations:  CHEMISTRY & BIOCHEMISTRY

Kary Banks Mullis (1944 – present) is an extremely creative free-thinker who invented the polymerase chain reaction (PCR) during his chemical research studies at an industrial research center.  This technological breakthrough enables DNA amplification (i.e., creation of myriad exact copies of some length of DNA), and now has been expanded into many new protocols and new instrumentation for molecular genetics, paternity testing, genomics, and personalized medicine.  The 1993 Nobel Prize in Chemistry was awarded to him for this very influential research discovery.  Dr. Mullis recognized that his Nobel Prize provided the opportunity to be able to freely announce his reasoned viewpoints about controversial topics in science and in ordinary life; he always is a very outspoken scientist and a vibrant individual.  He has preferred to conduct research within industrial laboratories, and currently works as a Distinguished Researcher at the Children’s Hospital and Research Institute in Oakland, California.

A considerable number of very fascinating stories and personal information, as well as a very clear explanation of how the PCR operates, is available on the website of Dr. Mullis (http://www.karymullis.com ).  His childhood interest in chemistry and research is recorded as a most amusing video presentation (see “Sons of Sputnik: Kary Mullis at TEDxOrangeCoast”, available on the internet at:  https://www.youtube.com/watch?v=iSVy1b-RyVM ).  The life story of Dr. Mullis epitomizes that many great researchers excel in personal determination, asking provocative questions, and thinking new thoughts (see my earlier article in the Scientists category on “Curiosity, Creativity, Inventiveness, and Individualism in Science”).

My first recommendation is his brief illustrated autobiography.  The second is a very personal account of how the notable discovery of PCR was made, and includes stories about his life as a student and a scientist.   The third is a video interview in 2005, 12 years after he became a Nobel Laureate; this includes some advice for young science students.  My fourth recommendation is his formal Nobel Prize lecture, presenting personal stories about his being a scientist, and including a vivid description of his “eureka moment” when he realized the significance of his amazing new research finding.

(1) Mullis, K.B., 2014.  Biography, and making rockets.  Available on the internet at:
http://www.karymullis.com/biography.shtml ).

(2) Mullis, K.B., 1993.  Autobiography, and addenda.  Available on the internet at:
http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1993/mullis-autobio.html.

(3) The Nobel Prize in Chemistry (1993), 2005.  Interview with Kary B. Mullis – Media Player at Nobelprize.com.  Available on the internet at:  http://www.nobelprize.org/mediaplayer/index.php?id=428 .

(4) Nobel Prize Lecture by K.B. Mullis, 1993.  Nobel Lecture: The polymerase chain reaction.  Available on the internet at:  http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1993/mullis-lecture.html .

 

GO BACK TO HOME PAGE    OR    SCROLL UP TO MENU

                                                           UNDER THE WEBSITE TITLE