Tag Archives: indirect costs of research

MONEY NOW IS EVERYTHING IN SCIENTIFIC RESEARCH AT UNIVERSITIES

All Is Money in University Science  (dr-monsrs.net)
All  Is  Money  in  University  Science     (dr-monsrs.net)

            Scientific research in recent times certainly is very costly (see my earlier post on “Introduction to Money in Modern Scientific Research” in the Money & Grants category).  Everything in a university research laboratory is quite expensive and costs keep rising each year.  Even such common inexpensive items as paper towels, phone calls, xerographic copies, and keys to lab rooms need to be paid for at many universities.  To handle all these expenses, faculty scientists must apply for a research grant, obtain an award, and then work hard to later get it renewed.  Unless a faculty member is working at a small undergraduate college, it simply is not possible to conduct research using only internal funds and undergraduate volunteer lab workers.  Without having laboratory co-workers, research comes to a screeching halt whenever the faculty member must be out of the lab while teaching, attending a committee meeting, eating lunch in a cafeteria, or going to see the dentist.  In addition to paying salaries for postdoctoral fellows, research technicians, and graduate students, faculty scientists must buy research supplies and equipment, get broken instruments repaired, and pay for many other research expenses (e.g., business travel, costs of publication, use of special research facilities on- and off-campus, etc.).  Thus, to conduct scientific research in a university, it is fundamentally necessary to obtain and maintain external research funding; without a research grant, laboratory research projects in universities now are nearly impossible.

           

            Although the federal government each year thankfully provides many billions of dollars to support experimental studies, the present research grant system in the US is not able to fund all the good proposals submitted by faculty scientists in universities.  Of those overjoyed applicants meriting an award, many receive only part of their requested budget.  The U.S. National Science Foundation, a very large federal agency offering research grants in nearly all branches of science and engineering, reports awarding research funds to only around 28% of the many thousands of investigators applying for research support each year [1]. 

            

            Today, the professional reputation of individual faculty scientists depends mostly on the total number of dollars brought in by their research grant award(s) each year.  It also is true that different universities compare their reputation for quality in education and scholarly prestige primarily on the basis of the annual total amount of external research grant awards generated by their faculty scientists.  Many universities seeking to elevate their financial profits from research grants now urge their science faculty to try to obtain a second or third external award (i.e., for a related or unrelated project); universities also can increase their profits from research grant awards simply by hiring more science faculty. 

            

            Failure to get a research grant renewed is no longer unusual, due to the ever-increasing large number of doctoral scientists vigorously competing for new and renewal funding.  Any such failure means a rapid loss of assigned laboratory space, loss of graduate students working with the faculty member, a diminished professional reputation, and the necessity to henceforth spend all of one’s time trying to get re-funded.  Although non-renewed faculty scientists can continue researching and publishing using supplies at hand, such activity usually declines to some small level within about one year of not being funded.  This unwelcome failure is a disaster that often causes a midcareer crisis (e.g., denial of promotion to tenured rank); having a second research grant does provide some welcome protection in this distressing situation.  

            

            Each and every faculty scientist is competing against each and every other scientist for a cut of the government pie.  While ordinary competition generally has good effects upon human activities, this most prominent of all science faculty efforts is so extensive and generates such high pressures that it must be termed a “hyper-competition”.  The hyper-competition for research grant awards downgrades collegiality, subverts collaborations, and encourages corruption; each of these has very destructive effects on the research enterprise.  Applying for a research grant always is very stressful; for each renewal application (i.e., after 3-5 years of supported research work), one must compete with a larger number of new and renewal applicants than was the case for the previous  application.  Since the consequences of dealing with the research grant system are so very important for the career progress of any faculty scientist, one might wonder why graduate students in modern science are not being required to also receive an MBA degree, in addition to their Ph.D.?  

 

There is an increasing tendency for faculty scientists to form research groups, ranging from 3 to over 100 individuals.  Joining a small research group means that the failure of one group member to get a renewal application funded does not either kill anyone within the group or stop the entire project from continuing.  Giant research groups typically are headed by a king or queen scientist, and can have their own building; these giant groups automatically provide more brains, more hands, more research grant money (from awards to multiple associated individuals), and more lab space than any individual scientist or small group can obtain.  In the large associations, group-think typically can become the usual condition; in such cases, the role of each individual doctoral scientist in the group often devolves into serving only as a highly educated technician, with little need for individual input, creative new ideas, or self-development.  Today’s research scientists who work as individual researchers in academia know they have a fragile status in the hyper-competition for research grants, and usually are extremely careful to select a niche project where there is little likelihood of competing with any giant research group; that mistake would be the kiss-of-death.  Although the federal granting agencies do currently endeavor to give initial awards for 3 years to many newly-appointed science faculty, they also seem to favor the funding of very large research groups; this is readily understandable, since such awards usually provide these agencies with a much firmer likelihood that the proposed studies will be completed on time, and, the anticipated research results will be found and published (i.e., because the proposed experiments actually have already been completed!).  

 

Inevitably, the former prominence of individual research scientists becomes diminished by any policies favoring the formation and operation of very large research groups.  The acknowledged curiosity and creative initiatives of individual researchers have been the main source for new ideas, new concepts, and new directions in science.  Basic research is the necessary progenitor of all the advanced technology arising in the modern world.  Both the granting agencies and the academic institutions should change their priorities and policies so as to increase and encourage, rather than decrease and discourage, the vital activity of individuals (i.e., young basic scientists) who contribute so importantly to research progress.  When basic research is de-emphasized or disfavored, so too is creativity in science also being diminished.

 

             Another negative aspect of the enlarged importance of money for today’s scientific research is the commercialization of experimental studies in modern universities.  Commercialism is widely accepted as the primary driver of research and development within industry; currently, it is being extended and expanded into all university research efforts (see my earlier post on “What is the Very Biggest Problem for Science Today?” in the Big Problems category).  Basic science thereby is increasingly diminished, and many efforts are being targeted toward some commercial development or industrial goal.  That scenario refuses to recognize the proven history that both applied research and engineering developments almost always follow from one or more preceding very basic experimental studies; those basic investigations typically have no practical usage foreseen at the time of their publication.  Many detailed examples, ranging from the transistor [e.g., 2] to paternity testing based on DNA technology with the polymerase chain reaction [e.g., 3,4], show that although some highly imaginative or theoretical idea for a new device or process might have stimulated much interest, very important commercial products only arise much later after the initial basic results are modified and developed by many applied research and engineering efforts. 

 

            Scientific research at universities now is only a business activity. have seen this perverse situation in person during my own career experiences, and believe that these problems and issues with money and university profits now have changed the very nature of being an academic scientist.  I can only conclude that money today is just about everything for scientific research at modern universities.  This new emphasis creates many secondary problems for science progress and puts many roadblocks in the way of individual research scientists.  The traditional goal of scientific research is to find more new knowledge, not to acquire more and more money.  Counting the number of dollars in research grants cannot be a valid and meaningful measure of the professional status and value of individual faculty scientists.  Readers should know that I am certainly not the only scientist to state all these views with dismay (e.g., A. Kuszewski, 2010.  What happened to creativity in science?  Available on the internet at:  http://www.science20.com/print/72577 ). 

 

[1]   National Science Foundation, 2013.  About funding.  Available on the internet at:

http://www.nsf.gov/funding/aboutfunding.jsp . 

[2]   Mullis, K.B., 1987.  Conversation with John Bardeen.  Available on the internet at:

http://www.karymullis.com/pdf/interview-jbardeen.pdf/ .

[3]  Universal Genetics DNA Testing Laboratory, 2013.  Paternity DNA test.  Available on the

internet at: http://www.dnatestingforpaternity.com/paternity-test.html .

[4]   Ingenetix, 2013.  Paternity testing.  Available on the internet at: 

http://www.ingenetix.com/en/paternaty-testing

 

GO BACK TO HOME PAGE   OR   SCROLL UP TO MENU

                                                            UNDER THE WEBSITE TITLE

INTRODUCTION TO MONEY IN MODERN SCIENTIFIC RESEARCH

Dollars for Research.signedIt’s all money !  Is the purpose of research really just to acquire money ??                                                        (http://dr-monsrs.net)

           

            Money for experimental research plays a very large role in modern science.  The key importance of money is due to: (1) research studies are very expensive, (2) without money, almost no experimental studies can be conducted, (3) not all good ideas are able to be funded by the granting agencies, and, (4) large portions of research grant awards are not being spent for actual research expenses. 

 

            Most research support in the USA comes either from federal grants to universities and small businesses, or from internal budgets for research and development in industrial companies.  The sum of all this dedicated support for experimental research studies is many billions of dollars each year; this huge figure clearly demonstrates the great importance of scientific research for the good of all people.   In Fiscal Year 2011, the grand total of all grants awarded for support of research by the US National Science Foundation (NSF) was $5,103,500,000 [1].  The total research and development outlays for all nondefense studies from any sources in this same period were over 65 billion dollars [2].  These billion dollar sums prove that modern research indeed is very expensive.  Special fundung programs, often requiring establishment of a multi-user facility, have been set-up for applications to purchase very large and particularly expensive special research instruments. 

 

            Research grant funds are spent by scientists for the purchase of supplies (e.g., chemicals, blank DVDs, specimen holders, test tubes), acquisition or usage of some special research equipment (e.g., regulated very high temperature ovens, chromatography columns and systems, personal computers), and, purchase of business travel (e.g., to collect specimens or data in the field, to attend annual science meetings).  They also are used to pay for telephone usage and copying costs, employment of laboratory personnel, support of graduate students working in the laboratory, provision of partial  salary for the grant-holder (i.e., Principal Investigator), adjunctive costs of performing experiments (e.g., utilization of an institutional or regional research facilities, the costs of monitoring radiation exposure, care and housing for research animals), etc.  Unless someone pays, all these activities would stop. 

 

            Although there are federal and institutional oversight controls to verify which expenses are bonafide and necessary, the inherent nature of the present research grant system means that  large amounts of money are not being spent for direct support of the actual research experiments (i.e.,  therefore, my view is that they are being wasted!).  Some of these wated funds are spent on redundant or unnecessary expenses.  Other wastage comes from the frequent absence of organized mechanisms for re-assignment and re-use of expensive research equipment that is no longer needed (i.e., why pass along a 5-10 year old working research instrument belonging to the late Professor Jones, when the new faculty member, Assistant Professor Smith, can buy the very latest model with his newly awarded research grant?).  It is well-known amongst grant-holders that all awarded funds must be spent; there is no official capability to bank any unspent research grant funds, nor is there any encouragement to ever try to save money and then return unspent portions of the awarded funds. 

 

            The very largest inappropriate expenditure of research grant funds in my view is for payments of indirect costs.  Direct costs for scientific research are those necessarily spent to conduct experiments (see the many examples given above).  Indirect costs are those needed for such purposes as cleaning, heating, cooling, painting, and maintenance of the lab room(s), safety inspections, administrative activities, disposal of garbage and chemical waste, provision and drainage of water, etc.).  All of these expenditures for indirect costs are very necessary for the research conducted by faculty scientists, and certainly must be paid; however, I do question exactly who should pay for them.  At universities, many faculty in mathematics and computer science, the non-science faculty, and scholars working in library science, music, and art all need the same type of services listed above; however, the indirect costs of these faculty mostly are paid by some institutional entity.  Only faculty scientists holding a research grant and using a laboratory are required to pay for their indirect costs; senior doctoral scientists working at teaching and writing books, but no longer doing any laboratory studies, are not asked to pay for their indirect costs.  This selective targeting seems very peculiar to me. 

 

            At some academic institutions research grant payments for indirect costs are even larger than those for the direct costs.  Hence, big portions of research grant awards are being diverted away from their nominal purpose.  I must conclude that the payment of indirect costs by grants awarded to support scientific research constitutes a large waste of research grant funds and is not necessary.  My conclusion is very unusual since both the granting agencies and the universities agree to this peculiar policy.  I suspect, but cannot prove, that many working scientists holding research grants agree with me; I do know from talking with numerous university faculty scientists that most believe that current indirect cost rates are unrealistic and must be way too high. 


            All of the research grant awards now being misdirected to pay for indirect costs would be much better spent if they were used to permit more awards for direct costs to be made that (1) provide full, rather than only partial, funding, (2) give funding to a larger number of worthy applicants than is presently possible, and (3) enable some funding programs to extend for at least 10 years, instead of the 1-5 year period of support that is typical at present.  I will discuss all these issues and ideas for their solutions much further in later posts.

 

[1]   American Association for the Advancement of Science (AAAS), 2013.  Research funding at the National Science Foundation, FY 2011.  Available on the internet at:

http://www.aaas.org/sites/default/files/migrate/uploads/DiscNSF.png .

[2]   American Association for the Advancement of Science (AAAS), 2013.  Trends in nondefense R&D (research and devlopment) by function (FY 2011).  Available on the internet at:

http://www.aaas.org/sites/default/files/migrate/uploads/FunctionNON.jpg .

BACK TO HOME PAGE     OR     SCROLL UP TO MENU UNDER 

                                                          THE WEBSITE TITLE